Collaborating Authors


GPT-3 Creative Fiction


What if I told a story here, how would that story start?" Thus, the summarization prompt: "My second grader asked me what this passage means: …" When a given prompt isn't working and GPT-3 keeps pivoting into other modes of completion, that may mean that one hasn't constrained it enough by imitating a correct output, and one needs to go further; writing the first few words or sentence of the target output may be necessary.

A 20-Year Community Roadmap for Artificial Intelligence Research in the US Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.

Explainable AI: 4 industries where it will be critical


Let's say that I find it curious how Spotify recommended a Justin Bieber song to me, a 40-something non-Belieber. That doesn't necessarily mean that Spotify's engineers must ensure that their algorithms are transparent and comprehensible to me; I might find the recommendation a tad off-target, but the consequences are decidedly minimal. This is a fundamental litmus test for explainable AI – that is, machine learning algorithms and other artificial intelligence systems that produce outcomes that humans can readily understand and track backwards to the origins. Conversely, relatively low-stakes AI systems might be just fine with the black box model, where we don't understand (and can't readily figure out) the results. "If algorithm results are low-impact enough, like the songs recommended by a music service, society probably doesn't need regulators plumbing the depths of how those recommendations are made," says Dave Costenaro, head of artificial intelligence R&D at