Collaborating Authors


Challenges of Artificial Intelligence -- From Machine Learning and Computer Vision to Emotional Intelligence Artificial Intelligence

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.

GPT-3 Creative Fiction


What if I told a story here, how would that story start?" Thus, the summarization prompt: "My second grader asked me what this passage means: …" When a given prompt isn't working and GPT-3 keeps pivoting into other modes of completion, that may mean that one hasn't constrained it enough by imitating a correct output, and one needs to go further; writing the first few words or sentence of the target output may be necessary.

An executive primer on artificial general intelligence


To differentiate themselves from researchers solving narrow AI problems, a few research teams have claimed an almost proprietary interest in producing human-level intelligence (or more) under the name "artificial general intelligence." Some have adopted the term "super-intelligence" to describe AGI systems that by themselves could rapidly design even more capable systems, with those systems further evolving to develop capabilities that far exceed any possessed by humans.

The Illustrated GPT-2 (Visualizing Transformer Language Models)


This year, we saw a dazzling application of machine learning. The OpenAI GPT-2 exhibited impressive ability of writing coherent and passionate essays that exceed what we anticipated current language models are able to produce. The GPT-2 wasn't a particularly novel architecture – it's architecture is very similar to the decoder-only transformer. The GPT2 was, however, a very large, transformer-based language model trained on a massive dataset. In this post, we'll look at the architecture that enabled the model to produce its results. We will go into the depths of its self-attention layer. My goal here is to also supplement my earlier post, The Illustrated Transformer, with more visuals explaining the inner-workings of transformers, and how they've evolved since the original paper. My hope is that this visual language will hopefully make it easier to explain later Transformer-based models as their inner-workings continue to evolve.

A 20-Year Community Roadmap for Artificial Intelligence Research in the US Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.

Explainable AI: 4 industries where it will be critical


Let's say that I find it curious how Spotify recommended a Justin Bieber song to me, a 40-something non-Belieber. That doesn't necessarily mean that Spotify's engineers must ensure that their algorithms are transparent and comprehensible to me; I might find the recommendation a tad off-target, but the consequences are decidedly minimal. This is a fundamental litmus test for explainable AI – that is, machine learning algorithms and other artificial intelligence systems that produce outcomes that humans can readily understand and track backwards to the origins. Conversely, relatively low-stakes AI systems might be just fine with the black box model, where we don't understand (and can't readily figure out) the results. "If algorithm results are low-impact enough, like the songs recommended by a music service, society probably doesn't need regulators plumbing the depths of how those recommendations are made," says Dave Costenaro, head of artificial intelligence R&D at

AI in the media and creative industries Artificial Intelligence

Thanks to the Big Data revolution and increasing computing capacities, Artificial Intelligence (AI) has made an impressive revival over the past few years and is now omnipresent in both research and industry. The creative sectors have always been early adopters of AI technologies and this continues to be the case. As a matter of fact, recent technological developments keep pushing the boundaries of intelligent systems in creative applications: the critically acclaimed movie "Sunspring", released in 2016, was entirely written by AI technology, and the first-ever Music Album, called "Hello World", produced using AI has been released this year. Simultaneously, the exploratory nature of the creative process is raising important technical challenges for AI such as the ability for AI-powered techniques to be accurate under limited data resources, as opposed to the conventional "Big Data" approach, or the ability to process, analyse and match data from multiple modalities (text, sound, images, etc.) at the same time. The purpose of this white paper is to understand future technological advances in AI and their growing impact on creative industries. This paper addresses the following questions: Where does AI operate in creative Industries? What is its operative role? How will AI transform creative industries in the next ten years? This white paper aims to provide a realistic perspective of the scope of AI actions in creative industries, proposes a vision of how this technology could contribute to research and development works in such context, and identifies research and development challenges.