Goto

Collaborating Authors

Results


How Deepfakes could help implant false memories in our minds

#artificialintelligence

The human brain is a complex, miraculous thing. As best we can tell, it's the epitome of biological evolution. But it doesn't come with any security software preinstalled. And that makes it ridiculously easy to hack. We like to imagine the human brain as a giant neural network that speaks its own language.


The AI Index 2021 Annual Report

arXiv.org Artificial Intelligence

Welcome to the fourth edition of the AI Index Report. This year we significantly expanded the amount of data available in the report, worked with a broader set of external organizations to calibrate our data, and deepened our connections with the Stanford Institute for Human-Centered Artificial Intelligence (HAI). The AI Index Report tracks, collates, distills, and visualizes data related to artificial intelligence. Its mission is to provide unbiased, rigorously vetted, and globally sourced data for policymakers, researchers, executives, journalists, and the general public to develop intuitions about the complex field of AI. The report aims to be the most credible and authoritative source for data and insights about AI in the world.


Algorithmic Fairness

arXiv.org Artificial Intelligence

An increasing number of decisions regarding the daily lives of human beings are being controlled by artificial intelligence (AI) algorithms in spheres ranging from healthcare, transportation, and education to college admissions, recruitment, provision of loans and many more realms. Since they now touch on many aspects of our lives, it is crucial to develop AI algorithms that are not only accurate but also objective and fair. Recent studies have shown that algorithmic decision-making may be inherently prone to unfairness, even when there is no intention for it. This paper presents an overview of the main concepts of identifying, measuring and improving algorithmic fairness when using AI algorithms. The paper begins by discussing the causes of algorithmic bias and unfairness and the common definitions and measures for fairness. Fairness-enhancing mechanisms are then reviewed and divided into pre-process, in-process and post-process mechanisms. A comprehensive comparison of the mechanisms is then conducted, towards a better understanding of which mechanisms should be used in different scenarios. The paper then describes the most commonly used fairness-related datasets in this field. Finally, the paper ends by reviewing several emerging research sub-fields of algorithmic fairness.