Goto

Collaborating Authors

Results


Dow's Machine Learning Journey In International Trade

#artificialintelligence

A ccontainer vessel leaves the port in Singapore on July 16, 2020. Dow Chemical is in the midst of a digital transformation. They have set up Centers to test out new and emerging technologies. They have had success in developing valuable intellectual property in the area of trade classifications. Dr. John Wassick, Integrated Supply Chain Technology Fellow, Dow Inc. DD, was on a supply chain panel at the ARC Industry Forum in Orlando.


Determination of Latent Dimensionality in International Trade Flow

arXiv.org Machine Learning

Currently, high-dimensional data is ubiquitous in data science, which necessitates the development of techniques to decompose and interpret such multidimensional (aka tensor) datasets. Finding a low dimensional representation of the data, that is, its inherent structure, is one of the approaches that can serve to understand the dynamics of low dimensional latent features hidden in the data. Nonnegative RESCAL is one such technique, particularly well suited to analyze self-relational data, such as dynamic networks found in international trade flows. Nonnegative RESCAL computes a low dimensional tensor representation by finding the latent space containing multiple modalities. Estimating the dimensionality of this latent space is crucial for extracting meaningful latent features. Here, to determine the dimensionality of the latent space with nonnegative RESCAL, we propose a latent dimension determination method which is based on clustering of the solutions of multiple realizations of nonnegative RESCAL decompositions. We demonstrate the performance of our model selection method on synthetic data and then we apply our method to decompose a network of international trade flows data from International Monetary Fund and validate the resulting features against empirical facts from economic literature.


We Need a Drastic Rethink on Export Controls for AI

#artificialintelligence

Dave Aitel is the founder and CTO of Immunity. You can follow him @daveaitel. Export control on AI and machine learning algorithms is becoming a more important part of national security strategy as the world moves to a great-power competition landscape and technological changes force accommodation and rapid change to many national interests. However, like security software before it, AI presents unique challenges to how export control has traditionally worked, and these should be considered before being codified into international regulatory frameworks. As an example, on January 6, 2020, The Bureau of Industry and Security (BIS) in the U.S. Department of Commerce released the following rule, which imposed a license requirement on a particular kind of software useful for automatically identifying objects from drone or other imagery: "Geospatial imagery "software" "specially designed" for training a Deep Convolutional Neural Network to automate the analysis of geospatial imagery and point clouds, and having all of the following: Technical Note: A point cloud is a collection of data points defined by a given coordinate system. A point cloud is also known as a digital surface model."


Five Predictions for Supply Chains in 2020 - Dataconomy

#artificialintelligence

The year 2019 seemed to be the year of unpredictability, not the least of which was the seemingly ever-changing foreign trade policy of major world economies. Interestingly, it's that same unpredictable nature of foreign trade policy that serves as a springboard for supply chain predictions for 2020. Here are the top five predictions that will have a major impact on the world's global supply chains. Historically, digital transformation of the supply chain has taken place by targeting various functional silos within their own walls. This approach lacked the ability to evaluate the interconnected nature of supply chain decisions.


Spread-gram: A spreading-activation schema of network structural learning

arXiv.org Machine Learning

Network representation learning has exploded recently. However, existing studies usually reconstruct networks as sequences or matrices, which may cause information bias or sparsity problem during model training. Inspired by a cognitive model of human memory, we propose a network representation learning scheme. In this scheme, we learn node embeddings by adjusting the proximity of nodes traversing the spreading structure of the network. Our proposed method shows a significant improvement in multiple analysis tasks based on various real-world networks, ranging from semantic networks to protein interaction networks, international trade networks, human behavior networks, etc. In particular, our model can effectively discover the hierarchical structures in networks. The well-organized model training speeds up the convergence to only a small number of iterations, and the training time is linear with respect to the edge numbers.


The Impact of Artificial Intelligence on International Trade - TradeVistas

#artificialintelligence

Artificial intelligence (AI) stands to have a transformative impact on international trade. Already, specific applications in areas such as data analytics and translation services are reducing barriers to trade. At the same time, there are challenges in the development of AI that international trade rules could address. General AI refers to systems that can self-learn from experience with "humanlike breadth" and surpass human performance on tasks. General AI raises broad existential concerns, but remains a technology in the distant future.


Top-10 Artificial Intelligence Startups in Mexico

#artificialintelligence

While some people might think Cinco de Mayo is about Mexican independence, it's actually a holiday that celebrates the day three Americans fought and defeated El Guapo at the Battle of Santa Poco. And it's just one of the many things Mexico is famous for. Her rich cultural heritage has resulted in some of the world's best cuisine that has been exported to every corner of the planet. Then there are the other exports, like those depicted in the recent third season of Narcos, a gripping thriller about the country's cartels in the 1980s. Mexico also plays a key role in regional international trade as the US' neighbor and second largest export market.


How to get started with AI--before it's too late - Be Ready Content Hub

#artificialintelligence

AI and machine learning are going to start making a lot more decisions. They probably still won't be used in the near future to make "big" decisions like whether to put a 25 percent tariff on a commodity and start a trade war with a partner. However, nearly anything you've stuck in Excel and massaged, coded, or sorted is a good clustering, classification, or learning-to-rank problem. Anything that is a set of values that can be predicted is a good machine learning problem. Anything that is a pattern or shape or object that you just go through and "look for" is a good deep learning problem.


Sparse Three-parameter Restricted Indian Buffet Process for Understanding International Trade

arXiv.org Machine Learning

This paper presents a Bayesian nonparametric latent feature model specially suitable for exploratory analysis of high-dimensional count data. We perform a non-negative doubly sparse matrix factorization that has two main advantages: not only we are able to better approximate the row input distributions, but the inferred topics are also easier to interpret. By combining the three-parameter and restricted Indian buffet processes into a single prior, we increase the model flexibility, allowing for a full spectrum of sparse solutions in the latent space. We demonstrate the usefulness of our approach in the analysis of countries' economic structure. Compared to other approaches, empirical results show our model's ability to give easy-to-interpret information and better capture the underlying sparsity structure of data.


A framework for redescription set construction

arXiv.org Artificial Intelligence

Redescription mining is a field of knowledge discovery that aims at finding different descriptions of similar subsets of instances in the data. These descriptions are represented as rules inferred from one or more disjoint sets of attributes, called views. As such, they support knowledge discovery process and help domain experts in formulating new hypotheses or constructing new knowledge bases and decision support systems. In contrast to previous approaches that typically create one smaller set of redescriptions satisfying a pre-defined set of constraints, we introduce a framework that creates large and heterogeneous redescription set from which user/expert can extract compact sets of differing properties, according to its own preferences. Construction of large and heterogeneous redescription set relies on CLUS-RM algorithm and a novel, conjunctive refinement procedure that facilitates generation of larger and more accurate redescription sets. The work also introduces the variability of redescription accuracy when missing values are present in the data, which significantly extends applicability of the method. Crucial part of the framework is the redescription set extraction based on heuristic multi-objective optimization procedure that allows user to define importance levels towards one or more redescription quality criteria. We provide both theoretical and empirical comparison of the novel framework against current state of the art redescription mining algorithms and show that it represents more efficient and versatile approach for mining redescriptions from data.