Goto

Collaborating Authors

Results


Data-driven Astronomy

#artificialintelligence

Science is undergoing a data explosion, and astronomy is leading the way. Modern telescopes produce terabytes of data per observation, and the simulations required to model our observable Universe push supercomputers to their limits. To analyse this data scientists need to be able to think computationally to solve problems. In this course you will investigate the challenges of working with large datasets: how to implement algorithms that work; how to use databases to manage your data; and how to learn from your data with machine learning tools. The focus is on practical skills - all the activities will be done in Python 3, a modern programming language used throughout astronomy.


Free Machine Learning Courses From Top Companies And University

#artificialintelligence

If you are learning machine learning to get your first job or trying to change the industry, this article is for you. I am going to tell you about the free courses or almost free courses to learn machine learning. The course is developed by Facebook artificial intelligence team. This course is one of the best courses to learn deep learning algorithms. It has easy-to-understand explanations with amazing visuals.


Machine Learning with TensorFlow Google Cloud 日本語版

#artificialintelligence

Offered by Google Cloud. Google Cloud で機械学習(ML)について学ぶ. 実践的なデータを使用した包括的な ML 実習 Enroll for free.


Probabilistic Graphical Models

#artificialintelligence

Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems. This course is the first in a sequence of three.


3 Free Machine Learning Courses You Should Take Right Now

#artificialintelligence

There are many ways to get started with studying machine learning. I have previously written a lot about how to design your own curriculum and roadmap as an alternative to taking courses. This approach allows you to pick and choose free, or low-cost, resources from across the internet that suit both your learning style and budget. However, when you are just starting out on the beginning of your journey into machine learning it can often be useful to follow at least a short course that will guide you through the basic concepts first. This will give you a good foundational overview of the field and it will make it easier to design your own learning path and then continue on with deeper self-directed learning.


Advanced Data Science Capstone

#artificialintelligence

As a coursera certified specialization completer you will have a proven deep understanding on massive parallel data processing, data exploration and visualization, and advanced machine learning & deep learning. You'll understand the mathematical foundations behind all machine learning & deep learning algorithms. You can apply knowledge in practical use cases, justify architectural decisions, understand the characteristics of different algorithms, frameworks & technologies & how they impact model performance & scalability. If you choose to take this specialization and earn the Coursera specialization certificate, you will also earn an IBM digital badge. To find out more about IBM digital badges follow the link ibm.biz/badging.


Building a culture of pioneering responsibly

#artificialintelligence

As chief operating officer of one of the world's leading artificial intelligence labs, I spend a lot of time thinking about how our technologies impact people's lives – and how we can ensure that our efforts have a positive outcome. This is the focus of my work, and the critical message I bring when I meet world leaders and key figures in our industry. For instance, it was at the forefront of the panel discussion on'Equity Through Technology' that I hosted this week at the World Economic Forum in Davos, Switzerland. Inspired by the important conversations taking place at Davos on building a greener, fairer, better world, I wanted to share a few reflections on my own journey as a technology leader, along with some insight into how we at DeepMind are approaching the challenge of building technology that truly benefits the global community. In 2000, I took a sabbatical from my job at Intel to visit the orphanage in Lebanon where my father was raised. For two months, I worked to install 20 PCs in the orphanage's first computer lab, and to train the students and teachers to use them.


Machine Learning for Accounting with Python

#artificialintelligence

This course, Machine Learning for Accounting with Python, introduces machine learning algorithms (models) and their applications in accounting problems. It covers classification, regression, clustering, text analysis, time series analysis. This course provides an entry point for students to be able to apply proper machine learning models on business related datasets with Python to solve various problems. Accounting Data Analytics with Python is a prerequisite for this course. This course is running on the same platform (Jupyter Notebook) as that of the prerequisite course.


Machine Learning and Reinforcement Learning in Finance

#artificialintelligence

This course aims at providing an introductory and broad overview of the field of ML with the focus on applications on Finance. Supervised Machine Learning methods are used in the capstone project to predict bank closures. Simultaneously, while this course can be taken as a separate course, it serves as a preview of topics that are covered in more details in subsequent modules of the specialization Machine Learning and Reinforcement Learning in Finance. The goal of Guided Tour of Machine Learning in Finance is to get a sense of what Machine Learning is, what it is for and in how many different financial problems it can be applied to. The course is designed for three categories of students: Practitioners working at financial institutions such as banks, asset management firms or hedge funds Individuals interested in applications of ML for personal day trading Current full-time students pursuing a degree in Finance, Statistics, Computer Science, Mathematics, Physics, Engineering or other related disciplines who want to learn about practical applications of ML in Finance Experience with Python (including numpy, pandas, and IPython/Jupyter notebooks), linear algebra, basic probability theory and basic calculus is necessary to complete assignments in this course.


Developing AI Applications on Azure

#artificialintelligence

This course introduces the concepts of Artificial Intelligence and Machine learning. We'll discuss machine learning types and tasks, and machine learning algorithms. You'll explore Python as a popular programming language for machine learning solutions, including using some scientific ecosystem packages which will help you implement machine learning. Next, this course introduces the machine learning tools available in Microsoft Azure. We'll review standardized approaches to data analytics and you'll receive specific guidance on Microsoft's Team Data Science Approach.