Goto

Collaborating Authors

Results


Monte Carlo Tree Search: A Review of Recent Modifications and Applications

arXiv.org Artificial Intelligence

Monte Carlo Tree Search (MCTS) is a decision-making algorithm that consists in searching large combinatorial spaces represented by trees. In such trees, nodes denote states, also referred to as configurations of the problem, whereas edges denote transitions (actions) from one state to another. MCTS has been originally proposed in the work by Kocsis and Szepesvári (2006) and by Coulom (2006), as an algorithm for making computer players in Go. It was quickly called a major breakthrough (Gelly et al., 2012) as it allowed for a leap from 14 kyu, which is an average amateur level, to 5 dan, which is considered an advanced level but not professional yet. Before MCTS, bots for combinatorial games had been using various modifications of the min-max alpha-beta pruning algorithm (Junghanns, 1998) such as MTD(f) (Plaat, 2014) and hand-crafted heuristics. In contrast to them, MCTS algorithm is at its core aheuristic, which means that no additional knowledge is required other than just rules of a game (or a problem, generally speaking). However, it is possible to take advantage of heuristics and include them in the MCTS approach to make it more efficient and improve its convergence. Moreover, the given problem often tends to be so complex, from the combinatorial point of view, that some form of external help, e.g.


Analytics and Machine Learning in Vehicle Routing Research

arXiv.org Artificial Intelligence

The Vehicle Routing Problem (VRP) is one of the most intensively studied combinatorial optimisation problems for which numerous models and algorithms have been proposed. To tackle the complexities, uncertainties and dynamics involved in real-world VRP applications, Machine Learning (ML) methods have been used in combination with analytical approaches to enhance problem formulations and algorithmic performance across different problem solving scenarios. However, the relevant papers are scattered in several traditional research fields with very different, sometimes confusing, terminologies. This paper presents a first, comprehensive review of hybrid methods that combine analytical techniques with ML tools in addressing VRP problems. Specifically, we review the emerging research streams on ML-assisted VRP modelling and ML-assisted VRP optimisation. We conclude that ML can be beneficial in enhancing VRP modelling, and improving the performance of algorithms for both online and offline VRP optimisations. Finally, challenges and future opportunities of VRP research are discussed.


A Survey on the Explainability of Supervised Machine Learning

Journal of Artificial Intelligence Research

Predictions obtained by, e.g., artificial neural networks have a high accuracy but humans often perceive the models as black boxes. Insights about the decision making are mostly opaque for humans. Particularly understanding the decision making in highly sensitive areas such as healthcare or finance, is of paramount importance. The decision-making behind the black boxes requires it to be more transparent, accountable, and understandable for humans. This survey paper provides essential definitions, an overview of the different principles and methodologies of explainable Supervised Machine Learning (SML). We conduct a state-of-the-art survey that reviews past and recent explainable SML approaches and classifies them according to the introduced definitions. Finally, we illustrate principles by means of an explanatory case study and discuss important future directions.


Voronoi Progressive Widening: Efficient Online Solvers for Continuous Space MDPs and POMDPs with Provably Optimal Components

arXiv.org Artificial Intelligence

Markov decision processes (MDPs) and partially observable MDPs (POMDPs) can effectively represent complex real-world decision and control problems. However, continuous space MDPs and POMDPs, i.e. those having continuous state, action and observation spaces, are extremely difficult to solve, and there are few online algorithms with convergence guarantees. This paper introduces Voronoi Progressive Widening (VPW), a general technique to modify tree search algorithms to effectively handle continuous or hybrid action spaces, and proposes and evaluates three continuous space solvers: VOSS, VOWSS, and VOMCPOW. VOSS and VOWSS are theoretical tools based on sparse sampling and Voronoi optimistic optimization designed to justify VPW-based online solvers. While previous algorithms have enjoyed convergence guarantees for problems with continuous state and observation spaces, VOWSS is the first with global convergence guarantees for problems that additionally have continuous action spaces. VOMCPOW is a versatile and efficient VPW-based algorithm that consistently outperforms POMCPOW and BOMCP in several simulation experiments.


Digital Twins Are Not Monozygotic -- Cross-Replicating ADAS Testing in Two Industry-Grade Automotive Simulators

arXiv.org Artificial Intelligence

The increasing levels of software- and data-intensive driving automation call for an evolution of automotive software testing. As a recommended practice of the Verification and Validation (V&V) process of ISO/PAS 21448, a candidate standard for safety of the intended functionality for road vehicles, simulation-based testing has the potential to reduce both risks and costs. There is a growing body of research on devising test automation techniques using simulators for Advanced Driver-Assistance Systems (ADAS). However, how similar are the results if the same test scenarios are executed in different simulators? We conduct a replication study of applying a Search-Based Software Testing (SBST) solution to a real-world ADAS (PeVi, a pedestrian vision detection system) using two different commercial simulators, namely, TASS/Siemens PreScan and ESI Pro-SiVIC. Based on a minimalistic scene, we compare critical test scenarios generated using our SBST solution in these two simulators. We show that SBST can be used to effectively and efficiently generate critical test scenarios in both simulators, and the test results obtained from the two simulators can reveal several weaknesses of the ADAS under test. However, executing the same test scenarios in the two simulators leads to notable differences in the details of the test outputs, in particular, related to (1) safety violations revealed by tests, and (2) dynamics of cars and pedestrians. Based on our findings, we recommend future V&V plans to include multiple simulators to support robust simulation-based testing and to base test objectives on measures that are less dependant on the internals of the simulators.


A Survey on the Explainability of Supervised Machine Learning

arXiv.org Machine Learning

Predictions obtained by, e.g., artificial neural networks have a high accuracy but humans often perceive the models as black boxes. Insights about the decision making are mostly opaque for humans. Particularly understanding the decision making in highly sensitive areas such as healthcare or fifinance, is of paramount importance. The decision-making behind the black boxes requires it to be more transparent, accountable, and understandable for humans. This survey paper provides essential definitions, an overview of the different principles and methodologies of explainable Supervised Machine Learning (SML). We conduct a state-of-the-art survey that reviews past and recent explainable SML approaches and classifies them according to the introduced definitions. Finally, we illustrate principles by means of an explanatory case study and discuss important future directions.


Language Models are Open Knowledge Graphs

arXiv.org Artificial Intelligence

This paper shows how to construct knowledge graphs (KGs) from pre-trained language models (e.g., BERT, GPT-2/3), without human supervision. Popular KGs (e.g, Wikidata, NELL) are built in either a supervised or semi-supervised manner, requiring humans to create knowledge. Recent deep language models automatically acquire knowledge from large-scale corpora via pre-training. The stored knowledge has enabled the language models to improve downstream NLP tasks, e.g., answering questions, and writing code and articles. In this paper, we propose an unsupervised method to cast the knowledge contained within language models into KGs. We show that KGs are constructed with a single forward pass of the pre-trained language models (without fine-tuning) over the corpora. We demonstrate the quality of the constructed KGs by comparing to two KGs (Wikidata, TAC KBP) created by humans. Our KGs also provide open factual knowledge that is new in the existing KGs. Our code and KGs will be made publicly available.


The bi-objective multimodal car-sharing problem

arXiv.org Artificial Intelligence

The aim of the bi-objective multimodal car-sharing problem (BiO-MMCP) is to determine the optimal mode of transport assignment for trips and to schedule the routes of available cars and users whilst minimizing cost and maximizing user satisfaction. We investigate the BiO-MMCP from a user-centred point of view. As user satisfaction is a crucial aspect in shared mobility systems, we consider user preferences in a second objective. Users may choose and rank their preferred modes of transport for different times of the day. In this way we account for, e.g., different traffic conditions throughout the planning horizon. We study different variants of the problem. In the base problem, the sequence of tasks a user has to fulfill is fixed in advance and travel times as well as preferences are constant over the planning horizon. In variant 2, time-dependent travel times and preferences are introduced. In variant 3, we examine the challenges when allowing additional routing decisions. Variant 4 integrates variants 2 and 3. For this last variant, we develop a branch-and-cut algorithm which is embedded in two bi-objective frameworks, namely the $\epsilon$-constraint method and a weighting binary search method. Computational experiments show that the branch-and cut algorithm outperforms the MIP formulation and we discuss changing solutions along the Pareto frontier.


Machine Learning in Airline Crew Pairing to Construct Initial Clusters for Dynamic Constraint Aggregation

arXiv.org Artificial Intelligence

The crew pairing problem (CPP) is generally modelled as a set partitioning problem where the flights have to be partitioned in pairings. A pairing is a sequence of flight legs separated by connection time and rest periods that starts and ends at the same base. Because of the extensive list of complex rules and regulations, determining whether a sequence of flights constitutes a feasible pairing can be quite difficult by itself, making CPP one of the hardest of the airline planning problems. In this paper, we first propose to improve the prototype Baseline solver of Desaulniers et al. (2020) by adding dynamic control strategies to obtain an efficient solver for large-scale CPPs: Commercial-GENCOL-DCA. These solvers are designed to aggregate the flights covering constraints to reduce the size of the problem. Then, we use machine learning (ML) to produce clusters of flights having a high probability of being performed consecutively by the same crew. The solver combines several advanced Operations Research techniques to assemble and modify these clusters, when necessary, to produce a good solution. We show, on monthly CPPs with up to 50 000 flights, that Commercial-GENCOL-DCA with clusters produced by ML-based heuristics outperforms Baseline fed by initial clusters that are pairings of a solution obtained by rolling horizon with GENCOL. The reduction of solution cost averages between 6.8% and 8.52%, which is mainly due to the reduction in the cost of global constraints between 69.79% and 78.11%.


Large-Scale Cargo Distribution

arXiv.org Artificial Intelligence

This study focuses on the design and development of methods for generating cargo distribution plans for large-scale logistics networks. It uses data from three large logistics operators while focusing on cross border logistics operations using one large graph. The approach uses a three-step methodology to first represent the logistic infrastructure as a graph, then partition the graph into smaller size regions, and finally generate cargo distribution plans for each individual region. The initial graph representation has been extracted from regional graphs by spectral clustering and is then further used for computing the distribution plan. The approach introduces methods for each of the modelling steps. The proposed approach on using regionalization of large logistics infrastructure for generating partial plans, enables scaling to thousands of drop-off locations. Results also show that the proposed approach scales better than the state-of-the-art, while preserving the quality of the solution. Our methodology is suited to address the main challenge in transforming rigid large logistics infrastructure into dynamic, just-in-time, and point-to-point delivery-oriented logistics operations.