Goto

Collaborating Authors

Results



Evaluation-Time Bias in Evolutionary Algorithms

#artificialintelligence

An Evolutionary Algorithm (EA) is a subset of evolutionary computation in artificial intelligence. Evolutionary computation is a family of algorithms for global optimization inspired by biological evolution. The rapid development of the information age with Big Data has led to an increase in the size and complexity of the optimization problems. In the context of an EA, this eventually results in the expansion of the search space with the fitness evaluation (used for optimal solution search) computation cost of the individuals becoming extremely high [1]. In this article, we will mainly focus on the Parallel EA variant with its two types and then dive deep into understanding the problem of evaluation time-bias.


Reinforcement Learning for Flexibility Design Problems

arXiv.org Artificial Intelligence

Flexibility design problems are a class of problems that appear in strategic decision-making across industries, where the objective is to design a ($e.g.$, manufacturing) network that affords flexibility and adaptivity. The underlying combinatorial nature and stochastic objectives make flexibility design problems challenging for standard optimization methods. In this paper, we develop a reinforcement learning (RL) framework for flexibility design problems. Specifically, we carefully design mechanisms with noisy exploration and variance reduction to ensure empirical success and show the unique advantage of RL in terms of fast-adaptation. Empirical results show that the RL-based method consistently finds better solutions compared to classical heuristics.


Dynamic Bicycle Dispatching of Dockless Public Bicycle-sharing Systems using Multi-objective Reinforcement Learning

arXiv.org Artificial Intelligence

As a new generation of Public Bicycle-sharing Systems (PBS), the dockless PBS (DL-PBS) is an important application of cyber-physical systems and intelligent transportation. How to use AI to provide efficient bicycle dispatching solutions based on dynamic bicycle rental demand is an essential issue for DL-PBS. In this paper, we propose a dynamic bicycle dispatching algorithm based on multi-objective reinforcement learning (MORL-BD) to provide the optimal bicycle dispatching solution for DL-PBS. We model the DL-PBS system from the perspective of CPS and use deep learning to predict the layout of bicycle parking spots and the dynamic demand of bicycle dispatching. We define the multi-route bicycle dispatching problem as a multi-objective optimization problem by considering the optimization objectives of dispatching costs, dispatch truck's initial load, workload balance among the trucks, and the dynamic balance of bicycle supply and demand. On this basis, the collaborative multi-route bicycle dispatching problem among multiple dispatch trucks is modeled as a multi-agent MORL model. All dispatch paths between parking spots are defined as state spaces, and the reciprocal of dispatching costs is defined as a reward. Each dispatch truck is equipped with an agent to learn the optimal dispatch path in the dynamic DL-PBS network. We create an elite list to store the Pareto optimal solutions of bicycle dispatch paths found in each action, and finally, get the Pareto frontier. Experimental results on the actual DL-PBS systems show that compared with existing methods, MORL-BD can find a higher quality Pareto frontier with less execution time.


Spatial Network Decomposition for Fast and Scalable AC-OPF Learning

arXiv.org Artificial Intelligence

This paper proposes a novel machine-learning approach for predicting AC-OPF solutions that features a fast and scalable training. It is motivated by the two critical considerations: (1) the fact that topology optimization and the stochasticity induced by renewable energy sources may lead to fundamentally different AC-OPF instances; and (2) the significant training time needed by existing machine-learning approaches for predicting AC-OPF. The proposed approach is a 2-stage methodology that exploits a spatial decomposition of the power network that is viewed as a set of regions. The first stage learns to predict the flows and voltages on the buses and lines coupling the regions, and the second stage trains, in parallel, the machine-learning models for each region. Experimental results on the French transmission system (up to 6,700 buses and 9,000 lines) demonstrate the potential of the approach. Within a short training time, the approach predicts AC-OPF solutions with very high fidelity and minor constraint violations, producing significant improvements over the state-of-the-art. The results also show that the predictions can seed a load flow optimization to return a feasible solution within 0.03% of the AC-OPF objective, while reducing running times significantly.


Performance Analysis and Improvement of Parallel Differential Evolution

arXiv.org Artificial Intelligence

Differential evolution (DE) is an effective global evolutionary optimization algorithm using to solve global optimization problems mainly in a continuous domain. In this field, researchers pay more attention to improving the capability of DE to find better global solutions, however, the computational performance of DE is also a very interesting aspect especially when the problem scale is quite large. Firstly, this paper analyzes the design of parallel computation of DE which can easily be executed in Math Kernel Library (MKL) and Compute Unified Device Architecture (CUDA). Then the essence of the exponential crossover operator is described and we point out that it cannot be used for better parallel computation. Later, we propose a new exponential crossover operator (NEC) that can be executed parallelly with MKL/CUDA. Next, the extended experiments show that the new crossover operator can speed up DE greatly. In the end, we test the new parallel DE structure, illustrating that the former is much faster.


MPC-MPNet: Model-Predictive Motion Planning Networks for Fast, Near-Optimal Planning under Kinodynamic Constraints

arXiv.org Artificial Intelligence

Kinodynamic Motion Planning (KMP) is to find a robot motion subject to concurrent kinematics and dynamics constraints. To date, quite a few methods solve KMP problems and those that exist struggle to find near-optimal solutions and exhibit high computational complexity as the planning space dimensionality increases. To address these challenges, we present a scalable, imitation learning-based, Model-Predictive Motion Planning Networks framework that quickly finds near-optimal path solutions with worst-case theoretical guarantees under kinodynamic constraints for practical underactuated systems. Our framework introduces two algorithms built on a neural generator, discriminator, and a parallelizable Model Predictive Controller (MPC). The generator outputs various informed states towards the given target, and the discriminator selects the best possible subset from them for the extension. The MPC locally connects the selected informed states while satisfying the given constraints leading to feasible, near-optimal solutions. We evaluate our algorithms on a range of cluttered, kinodynamically constrained, and underactuated planning problems with results indicating significant improvements in computation times, path qualities, and success rates over existing methods.


Cost-Efficient Online Hyperparameter Optimization

arXiv.org Machine Learning

Recent work on hyperparameters optimization (HPO) has shown the possibility of training certain hyperparameters together with regular parameters. However, these online HPO algorithms still require running evaluation on a set of validation examples at each training step, steeply increasing the training cost. To decide when to query the validation loss, we model online HPO as a time-varying Bayesian optimization problem, on top of which we propose a novel \textit{costly feedback} setting to capture the concept of the query cost. Under this setting, standard algorithms are cost-inefficient as they evaluate on the validation set at every round. In contrast, the cost-efficient GP-UCB algorithm proposed in this paper queries the unknown function only when the model is less confident about current decisions. We evaluate our proposed algorithm by tuning hyperparameters online for VGG and ResNet on CIFAR-10 and ImageNet100. Our proposed online HPO algorithm reaches human expert-level performance within a single run of the experiment, while incurring only modest computational overhead compared to regular training.


Predictive Optimization with Zero-Shot Domain Adaptation

arXiv.org Machine Learning

Prediction in a new domain without any training samples, called zero-shot domain adaptation (ZSDA) (Yang and Hospedales, 2015a,b), is an important task in domain adaptation. To this end, an approach to utilize domain descriptions (Yang and Hospedales, 2015a,b), called domain attributes, has been developed. A goal of ZSDA is to obtain predictions in an unseen domain in which we did not observe any training samples. An application of ZSDA is the sales prediction of new products; regarding domains as products and given product attributes and sales data, we can use ZSDA to the sales prediction of a customer for a new product. Thanks to ZSDA, we can predict the response of input in an unseen domain; however, one potential aspect of ZSDA has been overlooked. We demonstrate another potential of ZSDA; by reversing the ZSDA prediction process, we can optimize domain attributes so that an evaluation metric of responses over customers is maximized, referred to as attribute optimization as shown in Figure 1. That is, instead of predicting responses given new domain attributes as in ZSDA, our task is to find new domain attributes given a prediction.


On the Verification and Validation of AI Navigation Algorithms

arXiv.org Artificial Intelligence

This paper explores the state of the art on to methods to verify and validate navigation algorithms for autonomous surface ships. We perform a systematic mapping study to find research works published in the last 10 years proposing new algorithms for autonomous navigation and collision avoidance and we have extracted what verification and validation approaches have been applied on these algorithms. We observe that most research works use simulations to validate their algorithms. However, these simulations often involve just a few scenarios designed manually. This raises the question if the algorithms have been validated properly. To remedy this, we propose the use of a systematic scenario-based testing approach to validate navigation algorithms extensively.