Goto

Collaborating Authors

Results


Developing Future Human-Centered Smart Cities: Critical Analysis of Smart City Security, Interpretability, and Ethical Challenges

arXiv.org Artificial Intelligence

As we make tremendous advances in machine learning and artificial intelligence technosciences, there is a renewed understanding in the AI community that we must ensure that humans being are at the center of our deliberations so that we don't end in technology-induced dystopias. As strongly argued by Green in his book Smart Enough City, the incorporation of technology in city environs does not automatically translate into prosperity, wellbeing, urban livability, or social justice. There is a great need to deliberate on the future of the cities worth living and designing. There are philosophical and ethical questions involved along with various challenges that relate to the security, safety, and interpretability of AI algorithms that will form the technological bedrock of future cities. Several research institutes on human centered AI have been established at top international universities. Globally there are calls for technology to be made more humane and human-compatible. For example, Stuart Russell has a book called Human Compatible AI. The Center for Humane Technology advocates for regulators and technology companies to avoid business models and product features that contribute to social problems such as extremism, polarization, misinformation, and Internet addiction. In this paper, we analyze and explore key challenges including security, robustness, interpretability, and ethical challenges to a successful deployment of AI or ML in human-centric applications, with a particular emphasis on the convergence of these challenges. We provide a detailed review of existing literature on these key challenges and analyze how one of these challenges may lead to others or help in solving other challenges. The paper also advises on the current limitations, pitfalls, and future directions of research in these domains, and how it can fill the current gaps and lead to better solutions.


PSD2 Explainable AI Model for Credit Scoring

arXiv.org Artificial Intelligence

The aim of this paper is to develop and test advanced analytical methods to improve the prediction accuracy of Credit Risk Models, preserving at the same time the model interpretability. In particular, the project focuses on applying an explainable machine learning model to PSD2-related databases. The input data were obtained solely from synthetic account transactions generated from a pool of commercial banks from a pool of Italian commercial banks. Over the total proven models, CatBoost has shown the highest performance. The algorithm implementation produces a GINI of 0.45 after tuning the hyper-parameters combined with their inherent class-weight resampling method. SHAP package is used to provide a global and local interpretation of the model predictions to formulate a human-comprehensive approach to understanding the decision-maker algorithm. The 20 most important features are selected using the Shapley values to present a full human-understandable model that reveals how the attributes of an individual are related to its model prediction.


The Future of Artificial Intelligence

#artificialintelligence

June 8, 2019 Updated: April 20, 2020 "[AI] is going to change the world more than anything in the history of mankind. AI oracle and venture capitalist Dr. Kai-Fu Lee, 2018 In a nondescript building close to downtown Chicago, Marc Gyongyosi and the small but growing crew of IFM / Onetrack.AI have one rule that rules them all: think simple. The words are written in simple font on a simple sheet of paper that's stuck to a rear upstairs wall of their industrial two-story workspace. Sitting at his cluttered desk, located near an oft-used ping-pong table and prototypes of drones from his college days suspended overhead, Gyongyosi punches some keys on a laptop to pull up grainy video footage of a forklift driver operating his vehicle in a warehouse. It was captured from overhead courtesy of a Onetrack.AI "forklift vision system." The Future of Artificial Intelligence Artificial intelligence is impacting the future of virtually every industry and every human being. Artificial intelligence has acted as the main driver of emerging technologies like big data, robotics and IoT, and it will continue to act as a technological innovator for the foreseeable future. Employing machine learning and computer vision for detection and classification of various "safety events," the shoebox-sized device doesn't see all, but it sees plenty. Like which way the driver is looking as he operates the vehicle, how fast he's driving, where he's driving, locations of the people around him and how other forklift operators are maneuvering their vehicles. IFM's software automatically detects safety violations (for example, cell phone use) and notifies warehouse managers so they can take immediate action. The main goals are to prevent accidents and increase efficiency. The mere knowledge that one of IFM's devices is watching, Gyongyosi claims, has had "a huge effect." Marc Gyongyosi Photo Credit: IFM/OneTrack.AI The lower level of IFM was designed to mimic a warehouse environment so products can be effectively tested on site. Photo Credit: IFM/OneTrack.AI "If you think about a camera, it really is the richest sensor available to us today at a very interesting price point," he says. "Because of smartphones, camera and image sensors have become incredibly inexpensive, yet we capture a lot of information.


The Future of AI Part 1

#artificialintelligence

It was reported that Venture Capital investments into AI related startups made a significant increase in 2018, jumping by 72% compared to 2017, with 466 startups funded from 533 in 2017. PWC moneytree report stated that that seed-stage deal activity in the US among AI-related companies rose to 28% in the fourth-quarter of 2018, compared to 24% in the three months prior, while expansion-stage deal activity jumped to 32%, from 23%. There will be an increasing international rivalry over the global leadership of AI. President Putin of Russia was quoted as saying that "the nation that leads in AI will be the ruler of the world". Billionaire Mark Cuban was reported in CNBC as stating that "the world's first trillionaire would be an AI entrepreneur".


Forecasting AI Progress: A Research Agenda

arXiv.org Artificial Intelligence

Forecasting AI progress is essential to reducing uncertainty in order to appropriately plan for research efforts on AI safety and AI governance. While this is generally considered to be an important topic, little work has been conducted on it and there is no published document that gives and objective overview of the field. Moreover, the field is very diverse and there is no published consensus regarding its direction. This paper describes the development of a research agenda for forecasting AI progress which utilized the Delphi technique to elicit and aggregate experts' opinions on what questions and methods to prioritize. The results of the Delphi are presented; the remainder of the paper follow the structure of these results, briefly reviewing relevant literature and suggesting future work for each topic. Experts indicated that a wide variety of methods should be considered for forecasting AI progress. Moreover, experts identified salient questions that were both general and completely unique to the problem of forecasting AI progress. Some of the highest priority topics include the validation of (partially unresolved) forecasts, how to make forecasting action-guiding and the quality of different performance metrics. While statistical methods seem more promising, there is also recognition that supplementing judgmental techniques can be quite beneficial.


How to Define and Execute Your Data and AI Strategy · Harvard Data Science Review

#artificialintelligence

Over the past decade, many organizations have come to recognize that their future success will depend on data and AI (artificial intelligence) capabilities. Expectations are high and companies are heavily investing in the area. However, our experience advising organizations in diverse industries suggests that many have also become disillusioned in their journey to create companywide, data-driven business transformation. This article discusses some of the common pitfalls in the implementation of data and AI strategies and gives recommendations for business leaders on how to successfully include data and AI in their business processes. These recommendations address the core enablers for data and AI capabilities, from setting the ambition level to hiring the right talent and defining the AI organization and operating model. Many companies are currently investing in data and artificial intelligence (AI). Since the terminology varies, the activities may be called AI, advanced analytics, data science, or machine learning, but the goals are the same: to increase revenues and efficiency in current business and to develop new data-enabled offerings. In addition, many companies see an increasing responsibility to contribute their AI expertise toward humanitarian and social matters. It is well understood that to stay competitive in the digital economy, the company's internal processes and products need to be smart--and smartness comes from data and AI. Over the past 4 years, our company DAIN Studios has been involved in more than 40 Data and AI initiatives in different companies and industries in Finland, Germany, Austria, Switzerland, and the Netherlands. Our clients are typically large, publicly listed companies.


GPT-3 Creative Fiction

#artificialintelligence

What if I told a story here, how would that story start?" Thus, the summarization prompt: "My second grader asked me what this passage means: …" When a given prompt isn't working and GPT-3 keeps pivoting into other modes of completion, that may mean that one hasn't constrained it enough by imitating a correct output, and one needs to go further; writing the first few words or sentence of the target output may be necessary.


Future of AI Part 5: The Cutting Edge of AI

#artificialintelligence

Edmond de Belamy is a Generative Adversarial Network portrait painting constructed in 2018 by Paris-based arts-collective Obvious and sold for $432,500 in Southebys in October 2018.


The artificial intelligence economy

AIHub

What the near future of Artificial Intelligence could be.


AI Research Considerations for Human Existential Safety (ARCHES)

arXiv.org Artificial Intelligence

Framed in positive terms, this report examines how technical AI research might be steered in a manner that is more attentive to humanity's long-term prospects for survival as a species. In negative terms, we ask what existential risks humanity might face from AI development in the next century, and by what principles contemporary technical research might be directed to address those risks. A key property of hypothetical AI technologies is introduced, called \emph{prepotence}, which is useful for delineating a variety of potential existential risks from artificial intelligence, even as AI paradigms might shift. A set of \auxref{dirtot} contemporary research \directions are then examined for their potential benefit to existential safety. Each research direction is explained with a scenario-driven motivation, and examples of existing work from which to build. The research directions present their own risks and benefits to society that could occur at various scales of impact, and in particular are not guaranteed to benefit existential safety if major developments in them are deployed without adequate forethought and oversight. As such, each direction is accompanied by a consideration of potentially negative side effects.