Goto

Collaborating Authors

Machine Learning


datamining_2021-05-09_23-30-38.xlsx

#artificialintelligence

The graph represents a network of 3,439 Twitter users whose tweets in the requested range contained "datamining", or who were replied to or mentioned in those tweets. The network was obtained from the NodeXL Graph Server on Monday, 10 May 2021 at 06:40 UTC. The requested start date was Monday, 10 May 2021 at 00:01 UTC and the maximum number of days (going backward) was 14. The maximum number of tweets collected was 7,500. The tweets in the network were tweeted over the 13-day, 7-hour, 19-minute period from Monday, 26 April 2021 at 16:40 UTC to Monday, 10 May 2021 at 00:00 UTC.


What SMBs Can Learn From Big Tech's AI Playbook?

#artificialintelligence

Artificial intelligence grew by leaps and bounds over the years, leaving its footprint across different sectors, including marketing, healthcare, telecommunication, human resource, government, banking and what have you. The big companies are always on the lookout for new ways to upgrade their workflows. To that end, companies like Apple, Microsoft, Google and Facebook have embraced AI with open arms. Unlimited resources, budget, and market position allow big companies to drive innovations at warp speed. In contrast, small companies find AI beyond their paygrade.


5 Big Myths of AI and Machine Learning Debunked

#artificialintelligence

Computerworld covers a range of technology topics, with a focus on these core areas of IT: Windows, Mobile, Apple/enterprise, Office and productivity suites, collaboration, web browsers and blockchain, as well as relevant information about companies such as Microsoft, Apple and Google.


Inference attacks: How much information can machine learning models leak?

#artificialintelligence

The widespread adoption of machine learning models in different applications has given rise to a new range of privacy and security concerns. Among them are'inference attacks', whereby attackers cause a target machine learning model to leak information about its training data. However, these attacks are not very well understood and we need to readjust our definitions and expectations of how they can affect our privacy. This is according to researchers from several academic institutions in Australia and India who made the warning in a new paper (PDF) accepted at the IEEE European Symposium on Security and Privacy, which will be held in September. The paper was jointly authored by researchers at the University of New South Wales; Birla Institute of Technology and Science, Pilani; Macquarie University; and the Cyber & Electronic Warfare Division, Defence Science and Technology Group, Australia.


High Danger of Defect: Machine learning model predicts potential disk failures in Google's DCs – Blocks and Files

#artificialintelligence

Google has devised a machine learning (ML) model that predicts disk failures with 98 per cent accuracy. The idea is to reduce data recovery work when disks actually fail. According to a Google blog by technical program manager Nitin Agarwal and AI engineer Rostam Dinyari, Google has millions of hard disk drives (HDDs) under management, some of which fail. "Any misses in identifying these failures at the right time can potentially cause serious outages across our many products and services." When a disk in Google's data centres encounters non-fatal problems, short of an actual crash, then data is (drained) read from the drive. The drive is then disconnected from production use, they apply diagnostics and it is fixed and returned to production.


A Complete Anomaly Detection Algorithm From Scratch in Python: Step by Step Guide

#artificialintelligence

Anomaly detection can be treated as a statistical task as an outlier analysis. But if we develop a machine learning model, it can be automated and as usual, can save a lot of time. There are so many use cases of anomaly detection. Credit card fraud detection, detection of faulty machines, or hardware systems detection based on their anomalous features, disease detection based on medical records are some good examples. There are many more use cases.


Your Guide for the Commonly Used Machine Learning Algorithms

#artificialintelligence

We are currently living in such a period where computing has transformed immensely from large mainframes to personal computers to the cloud. The constant technological progress and the evolution in computing resulted in major automation. In this article, let's understand few commonly used machine learning algorithms. These can be used for almost any kind of data problem. This is used to estimate real values like the cost of houses, number of calls, total sales, and many more based on a continuous variable.


Deep Learning Algorithms -- The Basic Guide

#artificialintelligence

It is a class of machine learning where theories of the subject aren't strongly established and views quickly change almost on daily basis. "I think people need to understand that deep learning is making a lot of things, behind the scenes, much better" – Sir Geoffrey Hinton Deep Learning can be termed as the best confluence of big data, big models, big compute and big dreams. Deep Learning is an algorithm that has no theoretical limitations of what it can learn; the more data and the more computational (CPU power) time you give, the better it is – Sir Geoffrey Hinton. AILabPage defines Deep learning is "Undeniably a mind-blowing synchronisation technique applied on the bases of 3 foundation pillars large data, computing power, skills (enriched algorithms) and experience which practically has no limits". Deep Learning is a subfield of machine learning domain.


Global Machine Learning Chip Industry Market Research Report, Growth Trends and Competitive Analysis 2021-2026 - KSU

#artificialintelligence

Furthermore, it offers exhaustive elaboration on various aspects of the businesses such as drivers and opportunities which are fueling the growth of Global Machine Learning Chip Industry Market. The report focuses on identifying various market trends, dynamics, growth drivers and factors restraining the market growth. Further, the report provides detailed insights into various growth opportunities and challenges based on various types of products(), applications(), end users(). It also helps to understand the restraints and challenges of market growth. The information provided in the study is collected from reliable sources such as industry websites and journals.


Hill Climbing and Simulated Annealing AI Algorithms

#artificialintelligence

Redeem Get Udemy Coupon What you'll learn Udemy Coupon Best Description Search Algorithms and Optimization techniques are the engines of most Artificial Intelligence techniques and Data Science. There is no doubt that Hill Climbing and Simulated Annealing are the most well-regarded and widely used AI search techniques. A lot of scientists and practitioners use search and optimization algorithms without understanding their internal structure. However, understanding the internal structure and mechanism of such AI problem-solving techniques will allow them to solve problems more efficiently. This also allows them to tune, tweak, and even design new algorithms for different projects.