Goto

Collaborating Authors

Machine Learning


We ran every test you could think of on the M1 Ultra

Engadget

We've now tested every version of Apple's M1 processor, from the first M1 chip in the 13-inch Macbook Pro all the way up to the M1 Ultra in the new Mac Studio, and the chip's ability to scale performance is pretty incredible. The M1 Ultra fuses two M1 Max chips together to get you a processor with 20 CPU cores and 64 GPU cores, along with up to 128GB of RAM, and it's one of the fastest processors we've ever tested. We asked what tests you'd like to see run on the M1 Ultra and assembled quite a list, including Adobe Lightroom and Premiere Pro, Davinci Resolve and Fusion, 3D modeling in Blender, machine learning tests like TensorFlow and Pytorch, and even some gaming. Amazingly, the M1 Ultra really does seem to be around twice as fast as the M1 Max in most applications. Whatever overhead is required to shuffle data around such a large chip, it rarely impacts CPU performance.


Should I use offline RL or imitation learning?

AIHub

Figure 1: Summary of our recommendations for when a practitioner should BC and various imitation learning style methods, and when they should use offline RL approaches. Offline reinforcement learning allows learning policies from previously collected data, which has profound implications for applying RL in domains where running trial-and-error learning is impractical or dangerous, such as safety-critical settings like autonomous driving or medical treatment planning. In such scenarios, online exploration is simply too risky, but offline RL methods can learn effective policies from logged data collected by humans or heuristically designed controllers. Prior learning-based control methods have also approached learning from existing data as imitation learning: if the data is generally "good enough," simply copying the behavior in the data can lead to good results, and if it's not good enough, then filtering or reweighting the data and then copying can work well. Several recent works suggest that this is a viable alternative to modern offline RL methods.


Designing societally beneficial Reinforcement Learning (RL) systems

Robohub

Deep reinforcement learning (DRL) is transitioning from a research field focused on game playing to a technology with real-world applications. Notable examples include DeepMind's work on controlling a nuclear reactor or on improving Youtube video compression, or Tesla attempting to use a method inspired by MuZero for autonomous vehicle behavior planning. But the exciting potential for real world applications of RL should also come with a healthy dose of caution – for example RL policies are well known to be vulnerable to exploitation, and methods for safe and robust policy development are an active area of research. At the same time as the emergence of powerful RL systems in the real world, the public and researchers are expressing an increased appetite for fair, aligned, and safe machine learning systems. The focus of these research efforts to date has been to account for shortcomings of datasets or supervised learning practices that can harm individuals.


DeepMind's 'Gato' is mediocre, so why did they build it?

ZDNet

Tiernan Ray has been covering technology and business for 27 years. He was most recently technology editor for Barron's where he wrote daily market coverage for the Tech Trader blog and wrote the weekly print column of that name. DeepMind's "Gato" neural network excels at numerous tasks including controlling robotic arms that stack blocks, playing Atari 2600 games, and captioning images. The world is used to seeing headlines about the latest breakthrough by deep learning forms of artificial intelligence. The latest achievement of the DeepMind division of Google, however, might be summarized as, "One AI program that does a so-so job at a lot of things."


No gas rebates in sight as average prices in L.A. barrel toward $6 a gallon -- again

Los Angeles Times

Experts say a perfect storm of supply-and-demand issues are sending gas prices in Los Angeles soaring again, with the price-per-gallon increasing more than 14 cents in the last 16 days, according to the latest fuel prices tracked by AAA. L.A. fuel prices are again inching toward a $6-a-gallon record set in March. The average price of a gallon of regular gasoline in the Los Angeles area is currently $5.91, with plenty of stations charging well over that. A year ago the price was $4.16. Overnight, the price jumped 2.2 cents, the highest level it has risen since February.


A guide to artificial intelligence and machine learning

#artificialintelligence

According to Gartner, AI applies advanced analysis and logic-based techniques, including machine learning, to interpret events, support and automate decision-making, and take action. In essence, the concept of AI centres on enabling computer systems to think and act in a more'human' way, by learning from and responding to the vast amounts of information they're able to use. AI is already transforming our everyday lives. From the AI features on our smartphones such as built-in smart assistants, to the AI-curated content and recommendations on our social media feeds and streaming services. As the name suggests, machine learning is based on the idea that systems can learn from data to automate and improve how things are done – by using advanced algorithms (a set of rules or instructions) to analyse data, identify patterns and make decisions and recommendations based on what they find.


This is what may happen when we merge the human brain and computers

#artificialintelligence

Why are we on the verge of creating a technology that will combine the computer with the human nervous system into a single complex? Can a computer system handle the flood of data from billions of living neurons? I will try to answer these questions in this article. In the previous article "Individual artificial intelligence: A new technology that will change our world", we talked about the fact that a new type of artificial intelligence will become a bioelectronic hybrid in which a living human brain and a computer will work together. Thus, a new type of AI will be born – individual artificial intelligence.


Artificial Intelligence for Business

#artificialintelligence

Artificial intelligence has a wide range of uses in businesses, including streamlining job processes and aggregating business data. We will show you exactly how to succeed these applications, through Real World Business case studies. And for each of these applications we will build a separate AI to solve the challenge. In Part 1 - Optimizing Processes, we will build an AI that will optimize the flows in an E-Commerce warehouse. In Part 2 - Minimizing Costs, we will build a more advanced AI that will minimize the costs in energy consumption of a data center by more than 50%!


Decoding Bhagavad Gita through machine learning: What AI-based technologies tell us about philosophy, religion

#artificialintelligence

Machine learning and other artificial intelligence (AI) methods have had immense success with scientific and technical tasks such as predicting how protein molecules fold and recognising faces in a crowd. However, the application of these methods to the humanities is yet to be fully explored. What can AI tell us about philosophy and religion, for example? As a starting point for such an exploration, we used deep learning AI methods to analyse English translations of the Bhagavad Gita, an ancient Hindu text written originally in Sanskrit. Using a deep learning-based language model called BERT, we studied sentiment (emotions) and semantics (meanings) in the translations.


Hyperparameter Tuning of Decision Tree Classifier Using GridSearchCV

#artificialintelligence

The models can have many hyperparameters and finding the best combination of the parameter using grid search methods. Grid search is a technique for tuning hyperparameter that may facilitate build a model and evaluate a model for every combination of algorithms parameters per grid. We might use 10 fold cross-validation to search the best value for that tuning hyperparameter. These values are called hyperparameters. To get the simplest set of hyperparameters we will use the Grid Search method.