Goto

Collaborating Authors

Machine Learning


For AI model success, utilize MLops and get the data right

#artificialintelligence

We are excited to bring Transform 2022 back in-person July 19 and virtually July 20 - 28. Join AI and data leaders for insightful talks and exciting networking opportunities. It's critical to adopt a data-centric mindset and support it with ML operations Artificial intelligence (AI) in the lab is one thing; in the real world, it's another. Many AI models fail to yield reliable results when deployed. Others start well, but then results erode, leaving their owners frustrated. Many businesses do not get the return on AI they expect. Why do AI models fail and what is the remedy?


Exciting Data Science Project Ideas To Brush Up Your Skills

#artificialintelligence

Projects have always been thought of as measurable improvements resulting from a result produced, which serve as the icing on the cake for achieving personal or corporate goals. Talking about individual projects, have you found it challenging to learn at home? Many of us are in the same boat -- there are far too many things to handle during these trying times, and learning has taken a back seat, contrary to our expectations. So, what are our options for getting back on track? How can we apply what we have learned about data science in the real world? Picking an open-source data science project and sticking with it is extremely beneficial.


ML Tools to Accelerate your work with Cassie Breviu

#artificialintelligence

Want to ensure your app developers can create secure and smooth login experiences for your customers? With Curity you can protect user identities, secure apps and websites, and manage API access. Welcome to the InfoQ podcast. My name is Roland Meertens and today, I am interviewing Cassie Breviu. She is a senior program manager at Microsoft and hosted the innovations in machine learning systems track at QCon London. I am actually speaking to her in person at the venue of QCon London Conference. In this interview, I will talk with her on how she got started with AI and what machine learning tools can accelerate your work when deploying models on a wide range of devices. We will also talk about GitHub Copilot and how AI can help you be a better programmer. If you want to see her talk on how to operationalize transformer models on the edge, at the moment of recording this, you can still register for the QCon Plus Conference or see if the recording is already uploaded on infoq.com. Welcome, Cassie to QCon London. I'm very glad to see you here. I hope you're happy to be at this conference. I heard that you actually got into AI by being at the conference. I am thoroughly enjoying this conference. It's really put together really well and I really enjoy it. So what happened was I was at a developer conference. I was a full stack C# engineer and I'd always been really interested in AI and machine learning, but it always seemed scary and out of reach. I had even tried to read some books on it and I thought, "Well, this might be just too much for me or too complicated or I just can't do this." So I went to this talk by Jennifer Marsman and she did this amazing talk on, Would You Survive the Titanic Sinking? She used this product that's called Azure Machine Learning Designer.


Are There a Lot of Artificial Intelligence (A.I.) Jobs Right Now?

#artificialintelligence

A new breakdown shows that A.I. remains a highly specialized field with relatively few job openings--but that will almost certainly change in coming years. CompTIA's monthly Tech Jobs Report reveals that states with the largest tech hubs--including California, Texas, Washington, and Massachusetts--lead when it comes to A.I.-related job postings. It's true that companies don't need nearly as many machine-learning experts as, say, software developers or data scientists. Smaller organizations might not even have the budget to fill out an A.I. division. But CompTIA's job numbers keep growing month after month, indicating a sustained appetite for A.I. talent, especially among larger companies with the money to actually afford researchers and specialists.


AI in insurance - How is artificial intelligence impacting the insurance sector?

#artificialintelligence

What is data labeling in machine learning and how does it work? Data is the new wealth for today's businesses. With technologies such as artificial intelligence progressively taking over most of our day-to-day activities, the right usage of any data has been influencing society positively. By segregating and labeling data efficiently, ML algorithms can discover the issues and provide practical, and relevant solutions.


5 Different Ways To Save Your Machine Learning Model

#artificialintelligence

Saving your trained machine learning models is an important step in the machine learning workflow: it permits you to reuse them in the future. For instance, it's highly likely you'll have to compare models to determine the champion model to take into production -- saving the models when they are trained makes this process easier. The alternative would be to train the model each time it needs to be used, which can significantly affect productivity, especially if the model takes a long time to train. In this post, we will cover 5 different ways you can save your trained models. Pickle is one of the most popular ways to serialize objects in Python; You can use Pickle to serialize your trained machine learning model and save it to a file. At a later time or in another script, you can deserialize the file to access the trained model and use it to make predictions.


Learning Spark: Lightning-Fast Data Analytics: Damji, Jules S., Wenig, Brooke, Das, Tathagata, Lee, Denny: 9781492050049: Books

#artificialintelligence

Most developers who grapple with big data are data engineers, data scientists, or machine learning engineers. This book is aimed at those professionals who are looking to use Spark to scale their applications to handle massive amounts of data. In particular, data engineers will learn how to use Spark's Structured APIs to perform complex data exploration and analysis on both batch and streaming data; use Spark SQL for interactive queries; use Spark's built-in and external data sources to read, refine, and write data in different file formats as part of their extract, transform, and load (ETL) tasks; and build reliable data lakes with Spark and the open source Delta Lake table format. For data scientists and machine learning engineers, Spark's MLlib library offers many common algorithms to build distributed machine learning models. We will cover how to build pipelines with MLlib, best practices for distributed machine learning, how to use Spark to scale single-node models, and how to manage and deploy these models using the open source library MLflow.


Google Says It's Closing in on Human-Level Artificial Intelligence

#artificialintelligence

Artificial intelligence researchers are doubling down on the concept that we will see artificial general intelligence (AGI) -- that's AI that can accomplish anything humans can, and probably many we can't -- within our lifetimes. Responding to a pessimistic op-ed published by TheNextWeb columnist Tristan Greene, Google DeepMind lead researcher Dr. Nando de Freitas boldly declared that "the game is over" and that as we scale AI, so too will we approach AGI. Greene's original column made the relatively mainstream case that, in spite of impressive advances in machine learning over the past few decades, there's no way we're gonna see human-level artificial intelligence within our lifetimes. But it appears that de Freitas, like OpenAI Chief Scientist Ilya Sutskever, believes otherwise. "Solving these scaling challenges is what will deliver AGI," the DeepMind researcher tweeted, later adding that Sutskever "is right" to claim, quite controversially, that some neural networks may already by "slightly conscious."


How to Approach CNN Architecture from Scratch? - Analytics Vidhya

#artificialintelligence

This article was published as a part of the Data Science Blogathon. As a consequence of the large quantity of data accessible, particularly in the form of photographs and videos, the need for Deep Learning is growing by the day. Many advanced designs have been observed for diverse objectives, but Convolution Neural Network – Deep Learning techniques are the foundation for everything. So that'll be the topic of today's piece. Deep learning is a machine learning and artificial intelligence (AI) area that mimics how people learn.


Graviti AI Community

#artificialintelligence

Build skills and get inspired through solving real-world machine learning problems. Find the most exciting challenges and brainstorm with other great minds like you to come up with cutting-edge solutions.