Goto

Collaborating Authors

Results


Payment Fraud at Record Lows Thanks to Analytics and AI, Visa Says

#artificialintelligence

Despite a massive increase in online activity during the COVID-19 pandemic, fraud on the Visa payment network is at an all time low, the company says. One of the chief reasons for that success is a big investment in advanced analytics and AI. The world changed in March 2020, when many countries went into lockdowns to prevent the spread of the virus that causes COVID-19. As retail shops and other physical locations closed, people's attention turned to the Internet for school, work, and play. Since late 2019, the volume of e-commerce traffic has grown by 50%, according to Visa.


AI-based drug discovery with Atomwise and WEKA Data Platform - HPCwire

#artificialintelligence

The Covid-19 pandemic has profoundly changed the world. The remote workplace has become the norm. We have started looking at personal health differently – the way we work, live, play and do business. AI's use for drug discovery has accelerated post-Covid-19 era. Today, drug discovery is an expensive proposition, with a $2.6 billion cost over 10 years and just a 12% success rate.


Better data for better therapies: The case for building health data platforms

#artificialintelligence

The past decade has seen an important and, for many patients, a life-changing rise in the number of innovative new drugs reaching the market to treat diseases such as multiple sclerosis, malaria, and subtypes of certain cancers (such as melanoma or leukemia). In the United States, the Food and Drug Administration approved an average of 41 new molecular entities (including biologic license applications) each year from 2011 to 2020--almost double the number in the previous decade. Despite the immense costs of such achievements, 2 2. Asher Mullard, "New drugs cost US $2.6 billion to develop," Nature Reviews Drug Discovery, December 1, 2014. A major barrier is the daunting challenge of understanding the multifactorial nature of many diseases coupled with the vast set of variables in therapy design. Very few diseases, such as cystic fibrosis, are linked to variants in single genes. Drug development therefore tends to rely on a reductionist, hypothesis-driven approach that narrows the focus to individual cell types or pathways. Focused assays often based on partial information or informed by animal models that never perfectly reflect human disease then attempt to identify single molecules that will benefit patients.


Market Segmentation in the Emoji Era

Communications of the ACM

Ishaan and Elizabeth, both graduate students in business, are attending a marketing strategy lecture at a business school in the Northeast. While learning about the principles of market segmentation, Ishaan texts "outdated" followed by three thinking--face emojis to Elizabeth. He wonders how demographic-, geographic-, or psychographic-based segmentation--the topic of the lecture--can help his family's franchise restaurant deal with the hundreds of sometimes-not-so-positive online reviews and social media posts. Meanwhile, Elizabeth hopes that the fast-food restaurant where she ordered her lunch understands that she now belongs to the segment of'extremely displeased' customers. Earlier, she used the restaurant's new app to order a burrito without cheese and sour cream, only to discover that the meal included both offending ingredients. Her lunch went straight into the trash can and she angrily tweeted her disappointment to the restaurant. This simple vignette illustrates an important point. Organizations of every size are challenged with capitalizing on enormous amounts of unstructured organizational data--for instance, from social media posts--particularly for applications such as market segmentation. The purpose of this article is to give the reader an idea of the challenges and opportunities faced by businesses using market segmentation, including the impacts of big data. Our research will demonstrate what market segmentation might look like in the near future, as we also offer a promising approach to implementing market segmentation using unstructured data.


Advancing COVID-19 diagnosis with privacy-preserving collaboration in artificial intelligence - Nature Machine Intelligence

#artificialintelligence

Artificial intelligence provides a promising solution for streamlining COVID-19 diagnoses; however, concerns surrounding security and trustworthiness impede the collection of large-scale representative medical data, posing a considerable challenge for training a well-generalized model in clinical practices. To address this, we launch the Unified CT-COVID AI Diagnostic Initiative (UCADI), where the artificial intelligence (AI) model can be distributedly trained and independently executed at each host institution under a federated learning framework without data sharing. Here we show that our federated learning framework model considerably outperformed all of the local models (with a test sensitivity/specificity of 0.973/0.951 in China and 0.730/0.942 in the United Kingdom), achieving comparable performance with a panel of professional radiologists. We further evaluated the model on the hold-out (collected from another two hospitals without the federated learning framework) and heterogeneous (acquired with contrast materials) data, provided visual explanations for decisions made by the model, and analysed the trade-offs between the model performance and the communication costs in the federated training process. Our study is based on 9,573 chest computed tomography scans from 3,336 patients collected from 23 hospitals located in China and the United Kingdom. Collectively, our work advanced the prospects of utilizing federated learning for privacy-preserving AI in digital health. The COVID-19 pandemic sparked the need for international collaboration in using clinical data for rapid development of diagnosis and treatment methods. But the sensitive nature of medical data requires special care and ideally potentially sensitive data would not leave the organization which collected it. Xiang Bai and colleagues present a privacy-preserving AI framework for CT-based COVID-19 diagnosis and demonstrate it on data from 23 hospitals in China and the United Kingdom.


inequity

#artificialintelligence

This webinar brings together a diverse group of scholars and experts to discuss some of the inequity and systemic vulnerabilities of covid-19 pandemic. Nathaniel Osgood serves as Professor in the Department of Computer Science at the University of Saskatchewan, and Director of the Computational Epidemiology and Public Health Informatics Laboratory. His research focuses on combining tools from Systems Science, Data Science, Computational Science and Mathematics to inform decision making in health & health care. Dr. Osgood serves as Chief Research Advisor for the Saskatchewan Centre for Patient Oriented Research and has contributed to or co-led over a dozen initiatives involving people with lived experience with dynamic modeling, machine learning and/or big data collection efforts. Dr. Osgood served as the technical director of COVID-19 modeling for the Province of Saskatchewan from March 2020-April 2021.


Forecasting: theory and practice

arXiv.org Machine Learning

Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.


Global Big Data Conference

#artificialintelligence

Enterprises continued to accelerate the adoption of AI and machine learning to solve product and business challenges and improve revenues in 2021. Meanwhile, AI startups have experienced significant growth, roping in major investments to improve their product offerings and meet the growing demand for AI solutions across sectors. In fact, data from CB Insights Research shows that while the number of equity funding deals in the global AI space this year is just slightly less than the last (2,384 deals in 2021 versus 2,450 in 2020), the amount of capital invested has almost doubled to $68 billion. As we head into 2022, here's a quick look back at the milestones that shaped the AI space over the past 12 months. To start the year, OpenAI announced DALL-E, a multimodal AI system that generated images from text.


Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence

arXiv.org Artificial Intelligence

Title: Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence One sentence summary: An efficient and effective privacy-preserving AI framework is proposed for CT-based COVID-19 diagnosis, based on 9,573 CT scans of 3,336 patients, from 23 hospitals in China and the UK. Abstract Artificial intelligence (AI) provides a promising substitution for streamlining COVID-19 diagnoses. However, concerns surrounding security and trustworthiness impede the collection of large-scale representative medical data, posing a considerable challenge for training a well-generalised model in clinical practices. To address this, we launch the Unified CT-COVID AI Diagnostic Initiative (UCADI), where the AI model can be distributedly trained and independently executed at each host institution under a federated learning framework (FL) without data sharing. Here we show that our FL model outperformed all the local models by a large yield (test sensitivity /specificity in China: 0.973/0.951, in the UK: 0.730/0.942), We further evaluated the model on the hold-out (collected from another two hospitals leaving out the FL) and heterogeneous (acquired with contrast materials) data, provided visual explanations for decisions made by the model, and analysed the trade-offs between the model performance and the communication costs in the federated training process. Our study is based on 9,573 chest computed tomography scans (CTs) from 3,336 patients collected from 23 hospitals located in China and the UK. Collectively, our work advanced the prospects of utilising federated learning for privacy-preserving AI in digital health. MAIN TEXT Introduction As the gold standard for identifying COVID-19 carriers, reverse transcription-polymerase chain reaction (RT-PCR) is the primary diagnostic modality to detect viral nucleotide in specimens from cases with suspected infection. It has been reported that coronavirus carriers present certain radiological features in chest CTs, including ground-glass opacity, interlobular septal thickening, and consolidation, which can be exploited to identify COVID-19 cases.


CB Insights reveals 2021 cohort of 100 most-promising AI companies

#artificialintelligence

One way to gauge the deployment of artificial intelligence in the marketplace is to track CB Insights' top 100 most-promising private AI companies to watch. The firm released its annual list this week, culled from over 6,000 companies. "This year's cohort spans 18 industries, and is working on everything from climate risk to accelerating drug R&D," said CB Insights CEO Anand Sanwal in a press release. The products the companies are bringing to market range from revenue-cycle management for hospitals to autonomous beekeeping and municipal waste sortation, the firm said in a blog post, highlighting "the breadth and depth of AI's impact on industries." The synthetic data platform AI.Reverie made its second appearance on the AI 100 list.