Goto

Collaborating Authors

Results


Council Post: Four Ways Artificial Intelligence Is Hidden In Our Daily Lives

#artificialintelligence

People used to associate the term "artificial intelligence" with images of science fiction without even thinking that one day it could come to life. The concept of AI has been elevated from the realm of sci-fi to reality. There are many ways AI is used behind the scenes in everyday life that we don't even realize. These solutions are sometimes inaccessible, and they still need extensive training and expertise to become commonplace. As an entrepreneurial executive with more than 20 years of work experience in the software development and technology industry, and as the founder and CEO of one of the leading AI companies in Armenia, which builds deep tech innovations based on artificial intelligence and machine learning, this is a topic I deal with on a daily basis.


FDA leader talks evolving strategy for AI and machine learning validation

#artificialintelligence

At a virtual meeting of the U.S. Food and Drug Administration's Center for Devices and Radiological Health and Patient Engagement Advisory Committee on Thursday, regulators offered updates and new discussion around medical devices and decision support powered by artificial intelligence. One of the topics on the agenda was how to strike a balance between safety and innovation with algorithms getting smarter and better trained by the day. In his discussion of AI and machine learning validation, Bakul Patel, director of the FDA's recently-launched Digital Health Center of Excellence, said he sees huge breakthroughs on the horizon. "This new technology is going to help us get to a different place and a better place," said Patel. You're seeing automated image diagnostics.


FDA, Philips warn of data bias in AI, machine learning devices

#artificialintelligence

While AI and machine learning have the potential for transforming healthcare, the technology has inherent biases that could negatively impact patient care, senior FDA officials and Philips' head of global software standards said at the meeting. Bakul Patel, director of FDA's new Digital Health Center of Excellence, acknowledged significant challenges to AI/ML adoption including bias and the lack of large, high-quality and well-curated datasets. "There are some constraints because of just location or the amount of information available and the cleanliness of the data might drive inherent bias. We don't want to set up a system and we would not want to figure out after the product is out in the market that it is missing a certain type of population or demographic or other other aspects that we would have accidentally not realized," Patel said. Pat Baird, Philips' head of global software standards, warned without proper context there will be "improper use" of AI/ML-based devices that provide "incorrect conclusions" provided as part of clinical decision support.


AstraZeneca is using PyTorch-powered algorithms to discover new drugs

#artificialintelligence

Since it launched in 2017, Facebook's machine-learning framework PyTorch has been put to good use, with applications ranging from powering Elon Musk's autonomous cars to driving robot-farming projects. Now pharmaceutical firm AstraZeneca has revealed how its in-house team of engineers are tapping PyTorch too, and for equally as important endeavors: to simplify and speed up drug discovery. Combining PyTorch with Microsoft Azure Machine Learning, AstraZeneca's technology can comb through massive amounts of data to gain new insights about the complex links between drugs, diseases, genes, proteins or molecules. Those insights are used to feed an algorithm that can, in turn, recommend a number of drug targets for a given disease for scientists to test in the lab. The method could allow for huge strides in a sector like drug discovery, which so far has been based on costly and time-consuming trial-and-error methods.


Neo4j Announces First Graph Machine Learning for the Enterprise

#artificialintelligence

Until now, few companies outside of Google and Facebook have had the AI foresight and resources to leverage graph embeddings. This powerful and innovative technique calculates the shape of the surrounding network for each piece of data inside of a graph, enabling far better machine learning predictions. Neo4j for Graph Data Science version 1.4 democratizes these innovations to upend the way enterprises make predictions in diverse scenarios from fraud detection to tracking customer or patient journey, to drug discovery and knowledge graph completion. Caption: Graph embeddings are a powerful tool to abstract the complex structures of graphs and reduce their dimensionality. This technique opens up a wide range of uses for graph-based machine learning.


Machine Learning Discovers Potential new Tuberculosis Drugs

#artificialintelligence

Many biologists use machine learning (ML) as a computational tool to analyze a massive amount of data, helping them to recognise potential new drugs. MIT researchers have now integrated a new feature into these types of machine learning algorithms, enhancing their prediction-making ability. Using this new tool allows computer models to account for uncertainty in the data they are testing, MIT researchers detected several promising components that target a protein required by the bacteria that cause tuberculosis (TB). Although computer scientists previously used this technique, they have not taken off in biology. "It could also prove useful in protein design and many other fields of biology," says the Simons Professor of Mathematics and head of the Computation and Biology group in MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) Bonnie Berger.


Deep learning gives drug design a boost

#artificialintelligence

When you take a medication, you want to know precisely what it does. Pharmaceutical companies go through extensive testing to ensure that you do. With a new deep learning-based technique created at Rice University's Brown School of Engineering, they may soon get a better handle on how drugs in development will perform in the human body. The Rice lab of computer scientist Lydia Kavraki has introduced Metabolite Translator, a computational tool that predicts metabolites, the products of interactions between small molecules like drugs and enzymes. The Rice researchers take advantage of deep-learning methods and the availability of massive reaction datasets to give developers a broad picture of what a drug will do.


FDA leader talks evolving strategy for AI and machine learning validation

#artificialintelligence

And AI is helping healthcare professionals and patients get more insights into how they can translate what we already knew in different silos into …


IBM, Pfizer Collaborate On Early Alzheimer's Detection With Artificial Intelligence

#artificialintelligence

"Our vision is that one day clinicians will have multiple AI and machine learning tools to help identify if an individual is at risk of developing Alzheimer's …


FDA highlights the need to address bias in AI

#artificialintelligence

The U.S. Food and Drug Administration on Thursday convened a public meeting of its Patient Engagement Advisory Committee to discuss issues regarding artificial intelligence and machine learning in medical devices. "Devices using AI and ML technology will transform healthcare delivery by increasing efficiency in key processes in the treatment of patients," said Dr. Paul Conway, PEAC chair and chair of policy and global affairs of the American Association of Kidney Patients. As Conway and others noted during the panel, AI and ML systems may have algorithmic biases and lack transparency – potentially leading, in turn, to an undermining of patient trust in devices. Medical device innovation has already ramped up in response to the COVID-19 crisis, with Center for Devices and Radiological Health Director Dr. Jeff Shuren noting that 562 medical devices have already been granted emergency use authorization by the FDA. It's imperative, said Shuren, that patients' needs be considered as part of the creation process.