Goto

Collaborating Authors

Results


DP-100 Azure Machine Learning in Python-Basic to Advance

#artificialintelligence

Machine learning workflow orchestration to automate model training, deployment, and management processes using python.


Top 5 Professional AI Courses of 2022

#artificialintelligence

Artificial intelligence (AI) is the ability of a digital computer or computer-controlled robot to perform tasks that are commonly associated with intelligent creatures. Every student needs a perfect and well-polished course for better learning, no matter if they are fresher or has experience. That's why I wrote this post for those who are really confused about "which course is best for them from all over the Web?". This story is all about the best courses in "Artificial Intelligence" available on the market. This list is a little bit heavy but very exciting because all the courses listed here come from the most popular international educational websites like Coursera, Udacity, Udemy, and more.


Beginning Machine Learning with AWS

#artificialintelligence

Machine Learning with AWS is the right place to start if you are a beginner interested in learning useful artificial intelligence (AI) and machine learning skills using Amazon Web Services (AWS), the most popular and powerful cloud platform. You will learn how to use AWS to transform your projects into apps that work at high speed and are highly scalable. From natural language processing (NLP) applications, such as language translation and understanding news articles and other text sources, to creating chatbots with both voice and text interfaces, you will learn all that there is to know about using AWS to your advantage. You will also understand how to process huge numbers of images fast and create machine learning models. By the end of this course, you will have developed the skills you need to efficiently use AWS in your machine learning and artificial intelligence projects.


Importance of Data Science and Artificial Intelligence in education sector

#artificialintelligence

Meet Aswini Thota, an Analytics and Artificial Intelligence (AI) leader who solves organisational and business problems leveraging data. He always believed in the power of data and amased what insights we can grasp from it. Over the course of his career, Aswini has developed a skill set in analysing data and he hopes to use his experience and expertise in data science to help people discover the amazing career opportunities that lie ahead in the field of Data Science. He has effectively evolved from a machine learning researcher to an award-winning AI / Data science leader. Aswini holds two master's degrees in Electrical Engineering and Data Science.


Best online Artificial Intelligence courses for beginners

#artificialintelligence

This course, which has been developed by Coursera in collaboration with Harvard University, will allow you to take the first step in resolving major real-world challenges. It describes and explains the theories that are behind new-age technologies like game-playing engines, handwriting recognition and machine translation. It explores in detail the concepts and algorithms that underpin modern AI.


CLUE: Contextualised Unified Explainable Learning of User Engagement in Video Lectures

arXiv.org Artificial Intelligence

Predicting contextualised engagement in videos is a long-standing problem that has been popularly attempted by exploiting the number of views or the associated likes using different computational methods. The recent decade has seen a boom in online learning resources, and during the pandemic, there has been an exponential rise of online teaching videos without much quality control. The quality of the content could be improved if the creators could get constructive feedback on their content. Employing an army of domain expert volunteers to provide feedback on the videos might not scale. As a result, there has been a steep rise in developing computational methods to predict a user engagement score that is indicative of some form of possible user engagement, i.e., to what level a user would tend to engage with the content. A drawback in current methods is that they model various features separately, in a cascaded approach, that is prone to error propagation. Besides, most of them do not provide crucial explanations on how the creator could improve their content. In this paper, we have proposed a new unified model, CLUE for the educational domain, which learns from the features extracted from freely available public online teaching videos and provides explainable feedback on the video along with a user engagement score. Given the complexity of the task, our unified framework employs different pre-trained models working together as an ensemble of classifiers. Our model exploits various multi-modal features to model the complexity of language, context agnostic information, textual emotion of the delivered content, animation, speaker's pitch and speech emotions. Under a transfer learning setup, the overall model, in the unified space, is fine-tuned for downstream applications.


Knowledge Tracing: A Survey

arXiv.org Artificial Intelligence

Humans ability to transfer knowledge through teaching is one of the essential aspects for human intelligence. A human teacher can track the knowledge of students to customize the teaching on students needs. With the rise of online education platforms, there is a similar need for machines to track the knowledge of students and tailor their learning experience. This is known as the Knowledge Tracing (KT) problem in the literature. Effectively solving the KT problem would unlock the potential of computer-aided education applications such as intelligent tutoring systems, curriculum learning, and learning materials' recommendation. Moreover, from a more general viewpoint, a student may represent any kind of intelligent agents including both human and artificial agents. Thus, the potential of KT can be extended to any machine teaching application scenarios which seek for customizing the learning experience for a student agent (i.e., a machine learning model). In this paper, we provide a comprehensive and systematic review for the KT literature. We cover a broad range of methods starting from the early attempts to the recent state-of-the-art methods using deep learning, while highlighting the theoretical aspects of models and the characteristics of benchmark datasets. Besides these, we shed light on key modelling differences between closely related methods and summarize them in an easy-to-understand format. Finally, we discuss current research gaps in the KT literature and possible future research and application directions.


Challenges of Artificial Intelligence -- From Machine Learning and Computer Vision to Emotional Intelligence

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.


Agent Smith: Teaching Question Answering to Jill Watson

arXiv.org Artificial Intelligence

Building AI agents can be costly. Consider a question answering agent such as Jill Watson that automatically answers students' questions on the discussion forums of online classes based on their syllabi and other course materials. Training a Jill on the syllabus of a new online class can take a hundred hours or more. Machine teaching - interactive teaching of an AI agent using synthetic data sets - can reduce the training time because it combines the advantages of knowledge-based AI, machine learning using large data sets, and interactive human-in-loop training. We describe Agent Smith, an interactive machine teaching agent that reduces the time taken to train a Jill for a new online class by an order of magnitude.


An AI-based Solution for Enhancing Delivery of Digital Learning for Future Teachers

arXiv.org Artificial Intelligence

However, up until the COVID-19 pandemic caused a seismic shift in the education sector, few educational institutions had fully developed digital learning models in place and adoption of digital models was ad-hoc or only partially integrated alongside traditional teaching modes [1]. In the wake of the disruptive impact of the pandemic, the education sector and more importantly educators have had to move rapidly to take up digital solutions to continue delivering learning. At the most rudimentary level, this has meant moving to online teaching through platforms such as Zoom, Google, Teams and Interactive Whiteboards and delivering pre-recorded educational materials via Learning Management Systems (e.g., Echo). Digital learning is now simply part of the education landscape both in the traditional education sector as well as within the context of corporate and workplace learning. A key challenge future teachers face when delivering educational content via digital learning is to be able to assess what the learner knows and understands, the depths of that knowledge and understanding and any gaps in that learning. Assessment also occurs in the context of the cohort and relevant band or level of learning. The Teachers Guide to Assessment produced by the Australian Capital Territory Government [2] identified that teachers and learning designers were particularly challenged by the assessment process, and that new technologies have the potential to transform existing digital teaching and learning practices through refined information gathering and the ability to enhance the nature of learner feedback. Artificial Intelligence (AI) is part of the next generation of digital learning, enabling educators to create learning content, stream content to suit individual learner needs and access and in turn respond to data based on learner performance and feedback [3]. AI has the capacity to provide significant benefits to teachers to deliver nuanced and personalised experiences to learners.