Goto

Collaborating Authors

Results


Investment Management with Python and Machine Learning

#artificialintelligence

The practice of investment management has been transformed in recent years by computational methods. This course provides an introduction to the underlying science, with the aim of giving you a thorough understanding of that scientific basis. However, instead of merely explaining the science, we help you build on that foundation in a practical manner, with an emphasis on the hands-on implementation of those ideas in the Python programming language. This course is the first in a four course specialization in Data Science and Machine Learning in Asset Management but can be taken independently. In this course, we cover the basics of Investment Science, and we'll build practical implementations of each of the concepts along the way.


Using Machine Learning in Trading and Finance

#artificialintelligence

This 3-course Specialization from Google Cloud and New York Institute of Finance (NYIF) is for finance professionals, including but not limited to hedge fund traders, analysts, day traders, those involved in investment management or portfolio management, and anyone interested in gaining greater knowledge of how to construct effective trading strategies using Machine Learning (ML) and Python. Alternatively, this program can be for Machine Learning professionals who seek to apply their craft to quantitative trading strategies. By the end of the Specialization, you'll understand how to use the capabilities of Google Cloud to develop and deploy serverless, scalable, deep learning, and reinforcement learning models to create trading strategies that can update and train themselves. As a challenge, you're invited to apply the concepts of Reinforcement Learning to use cases in Trading. This program is intended for those who have an understanding of the foundations of Machine Learning at an intermediate level.


Machine Learning and Reinforcement Learning in Finance

#artificialintelligence

This course aims at providing an introductory and broad overview of the field of ML with the focus on applications on Finance. Supervised Machine Learning methods are used in the capstone project to predict bank closures. Simultaneously, while this course can be taken as a separate course, it serves as a preview of topics that are covered in more details in subsequent modules of the specialization Machine Learning and Reinforcement Learning in Finance. The goal of Guided Tour of Machine Learning in Finance is to get a sense of what Machine Learning is, what it is for and in how many different financial problems it can be applied to. The course is designed for three categories of students: Practitioners working at financial institutions such as banks, asset management firms or hedge funds Individuals interested in applications of ML for personal day trading Current full-time students pursuing a degree in Finance, Statistics, Computer Science, Mathematics, Physics, Engineering or other related disciplines who want to learn about practical applications of ML in Finance Experience with Python (including numpy, pandas, and IPython/Jupyter notebooks), linear algebra, basic probability theory and basic calculus is necessary to complete assignments in this course.


Python and Machine Learning for Asset Management

#artificialintelligence

This course will enable you mastering machine-learning approaches in the area of investment management. It has been designed by two thought leaders in their field, Lionel Martellini from EDHEC-Risk Institute and John Mulvey from Princeton University. Starting from the basics, they will help you build practical skills to understand data science so you can make the best portfolio decisions. The course will start with an introduction to the fundamentals of machine learning, followed by an in-depth discussion of the application of these techniques to portfolio management decisions, including the design of more robust factor models, the construction of portfolios with improved diversification benefits, and the implementation of more efficient risk management models. We have designed a 3-step learning process: first, we will introduce a meaningful investment problem and see how this problem can be addressed using statistical techniques.


Machine Learning for Algorithmic Trading Bots with Python

#artificialintelligence

Have you ever wondered how the Stock Market, Forex, Cryptocurrency and Online Trading works? Have you ever wanted to become a rich trader having your computers work and make money for you while you're away for a trip in the Maldives? Ever wanted to land a decent job in a brokerage, bank, or any other prestigious financial institution?We have compiled this course for you in order to seize your moment and land your dream job in financial sector. This course covers the advances in the techniques developed for algorithmic trading and financial analysis based on the recent breakthroughs in machine learning. We leverage the classic techniques widely used and applied by financial data scientists to equip you with the necessary concepts and modern tools to reach a common ground with financial professionals and conquer your next interview.By the end of the course, you will gain a solid understanding of financial terminology and methodology and a hands-on experience in designing and building financial machine learning models.


Challenges of Artificial Intelligence -- From Machine Learning and Computer Vision to Emotional Intelligence

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.


The Role of Social Movements, Coalitions, and Workers in Resisting Harmful Artificial Intelligence and Contributing to the Development of Responsible AI

arXiv.org Artificial Intelligence

There is mounting public concern over the influence that AI based systems has in our society. Coalitions in all sectors are acting worldwide to resist hamful applications of AI. From indigenous people addressing the lack of reliable data, to smart city stakeholders, to students protesting the academic relationships with sex trafficker and MIT donor Jeffery Epstein, the questionable ethics and values of those heavily investing in and profiting from AI are under global scrutiny. There are biased, wrongful, and disturbing assumptions embedded in AI algorithms that could get locked in without intervention. Our best human judgment is needed to contain AI's harmful impact. Perhaps one of the greatest contributions of AI will be to make us ultimately understand how important human wisdom truly is in life on earth.


Artificial Intelligence for Trading

#artificialintelligence

Demand for quantitative talent is growing at incredible rates. Data-driven traders are now responsible for more than 30% of all US stock trades by investors (or about $1 trillion USD worth of investments, up from 14% in 2013). This scenario represents incredible opportunity for individuals eager to apply cutting-edge technologies to trading and finance. Whether you want to pursue a new job in finance, launch yourself on the path to a quant trading career, or master the latest AI applications in trading and quantitative finance, this program will give you the opportunity to build an impressive portfolio of real-world projects. You will build financial models on real data, and work on your own trading strategies using natural language processing, recurrent neural networks, and random forests.


New York Institute of Finance and Google Cloud launch a Machine Learning for Trading Specialisation on Coursera

#artificialintelligence

The New York Institute of Finance (NYIF) and Google Cloud have launched a new Machine Learning for Trading Specialisation available exclusively on the Coursera platform. The Specialisation helps learners leverage the latest AI and machine learning techniques for financial trading. Amid the Fourth Industrial Revolution, nearly 80 per cent of financial institutions cite machine learning as a core component of business strategy and 75 per cent of financial services firms report investing significantly in machine learning. The Machine Learning for Trading Specialisation equips professionals with key technical skills increasingly needed in the financial industry today. Composed of three courses in financial trading, machine learning, and artificial intelligence, the Specialisation features a blend of theoretical and applied learning.


New York Institute of Finance and Google Cloud Launch A Machine Learning for Trading Specialization on Coursera

#artificialintelligence

The New York Institute of Finance (NYIF) and Google Cloud announced a new Machine Learning for Trading Specialization available exclusively on the Coursera platform. The Specialization helps learners leverage the latest AI and machine learning techniques for financial trading. Amid the Fourth Industrial Revolution, nearly 80 percent of financial institutions cite machine learning as a core component of business strategy and 75 percent of financial services firms report investing significantly in machine learning. The Machine Learning for Trading Specialization equips professionals with key technical skills increasingly needed in the financial industry today. Composed of three courses in financial trading, machine learning, and artificial intelligence, the Specialization features a blend of theoretical and applied learning.