Goto

Collaborating Authors

Results


Modular Machine Learning - Best Of Both Worlds?

#artificialintelligence

A Webinar By Joseph Simonian Abstract: After reviewing some differences between traditional statistics & data science, we present a modular machine learning framework for model validation which blends the two paradigms. Model validation is set up as a sequence of procedures, in which the output from one procedure serves as the input to another procedure within a single validation framework. An econometric model is used in the first module to classify data in an economically intuitive way. Proceeding modules apply data science techniques to evaluate the predictive characteristics of the model components. We apply the framework to the fundamental law of active management, a well-known formal characterization of portfolio managers alpha generation process.


Anomaly Detection in Time Series Data using Keras - Value ML

#artificialintelligence

In this project, we'll build a model for Anomaly Detection in Time Series data using Deep Learning in Keras with Python code.


Financial Engineering and Artificial Intelligence in Python

#artificialintelligence

Have you ever thought about what would happen if you combined the power of machine learning and artificial intelligence with financial engineering? Today, you can stop imagining, and start doing. This course will teach you the core fundamentals of financial engineering, with a machine learning twist. We will learn about the greatest flub made in the past decade by marketers posing as "machine learning experts" who promise to teach unsuspecting students how to "predict stock prices with LSTMs". You will learn exactly why their methodology is fundamentally flawed and why their results are complete nonsense.


Portfolio Optimization using Reinforcement Learning

#artificialintelligence

Reinforcement learning is arguably the coolest branch of artificial intelligence. It has already proven its prowess: stunning the world, beating the world champions in games of Chess, Go, and even DotA 2. Using RL for stock trading has always been a holy grail among data scientists. Stock trading has drawn our imaginations because of its ease of access and to misquote Cardi B, we like diamond and we like dollars . There are several ways of using Machine Learning for stock trading. One approach is to use forecasting techniques to predict the movement of the stock and build some heuristic based bot that uses the prediction to make decisions.



Why AI can help you beat the market

#artificialintelligence

Humans have always welcomed other beings in finance: over twenty years ago, some of the best Wall Street traders were outsmarted by Raven, a chimpanzee who picked stocks by throwing darts. Her index, called MonkeyDex, became one of the biggest sensations at the turn of the century after delivering a 213% gain. Perhaps because animals are not so easy to fit in offices, people have turned to other kinds of brains to choose equities. Big institutions are resorting to artificial intelligence (AI) to analyse stocks collating all sorts of information coming from a plethora of sources. In fact, while investments could previously be assessed based on financial reports and share price movement – what is called structured data – markets have been heavily influenced by unstructured data over the past few years.


Machine learning: Economics and computer science converge

#artificialintelligence

Today's digital economy is blurring the boundaries between computer science and economics -- in Silicon Valley, on Wall Street, and increasingly on university campuses. Yale undergraduates interested in both fields can pursue the Computer Science and Economics (CSEC) interdepartmental degree program, which launched in fall 2019, with coursework covering topics such as machine learning and computational finance. Philipp Strack, CSEC's inaugural director of undergraduate studies, is comfortable straddling multiple disciplines. With an academic background in economics and mathematics, his research reflects this broad and interdisciplinary outlook -- ranging from behavioral economics and neuroscience to auction design, market design, optimization, and pure probability theory. Strack, an associate professor of economics in the Faculty of Arts and Sciences, recently spoke to YaleNews about the real-world implications of this work, what the CSEC program offers students, and how it bridges these critical fields.


Blockchain on Command for Developers, Enterprises, Data, and Machine Learning

#artificialintelligence

Scalable Typescript based Blockchain platform to build Sidechains, run Machine Learning Algorithms, launch Cryptocurrency tokens, and customize Web Interfaces.


How Do You Feel About An Algorithm Deciding If Your Startup Gets Funding?

#artificialintelligence

I've been keeping an eye on the use of machine learning algorithms, particularly by venture capitalists, to make investment decisions for some time now. They've been investing in machine learning companies for years, so applying their products to other businesses, once you have studied how they work, seems a reasonable proposition. After all, what is the decision to invest in a startup based on? Basically, the fruit of a set of analyses and previous experiences that can be systematized and verified in different ways, while the experience corresponds, in reality, to the imperfect distillation, with its biases and errors, of a series of previous decisions, weighted by the results obtained in each. That said, venture capitalists are not entirely objective: they usually allow multiple factors to enter the decision-making process, which include anything from the feelings generated by the company's founding team, to more or less rigorous analyses of its capacity for future development.


Global Big Data Conference

#artificialintelligence

I've been keeping an eye on the use of machine learning algorithms, particularly by venture capitalists, to make investment decisions for some time now. They've been investing in machine learning companies for years, so applying their products to other businesses, once you have studied how they work, seems a reasonable proposition. After all, what is the decision to invest in a startup based on? Basically, the fruit of a set of analyses and previous experiences that can be systematized and verified in different ways, while the experience corresponds, in reality, to the imperfect distillation, with its biases and errors, of a series of previous decisions, weighted by the results obtained in each. That said, venture capitalists are not entirely objective: they usually allow multiple factors to enter the decision-making process, which include anything from the feelings generated by the company's founding team, to more or less rigorous analyses of its capacity for future development.