Collaborating Authors


MIT: Measuring Media Bias in Major News Outlets With Machine Learning


A study from MIT has used machine learning techniques to identify biased phrasing across around 100 of the largest and most influential news outlets in the US and beyond, including 83 of the most influential print news publications. It's a research effort that shows the way towards automated systems that could potentially auto-classify the political character of a publication, and give readers a deeper insight into the ethical stance of an outlet on topics that they may feel passionately about. The work centers on the way topics are addressed with particular phrasing, such as undocumented immigrant illegal Immigrant, fetus unborn baby, demonstrators anarchists. The project used Natural Language Processing (NLP) techniques to extract and classify such instances of'charged' language (on the assumption that apparently more'neutral' terms also represent a political stance) into a broad mapping that reveals left and right-leaning bias across over three million articles from around 100 news outlets, resulting in a navigable bias landscape of the publications in question. The paper comes from Samantha D'Alonzo and Max Tegmark at MIT's Department of Physics, and observes that a number of recent initiatives around'fact checking', in the wake of numerous'fake news' scandals, can be interpreted as disingenuous and serving the causes of particular interests.

Towards Personalized and Human-in-the-Loop Document Summarization Artificial Intelligence

The ubiquitous availability of computing devices and the widespread use of the internet have generated a large amount of data continuously. Therefore, the amount of available information on any given topic is far beyond humans' processing capacity to properly process, causing what is known as information overload. To efficiently cope with large amounts of information and generate content with significant value to users, we require identifying, merging and summarising information. Data summaries can help gather related information and collect it into a shorter format that enables answering complicated questions, gaining new insight and discovering conceptual boundaries. This thesis focuses on three main challenges to alleviate information overload using novel summarisation techniques. It further intends to facilitate the analysis of documents to support personalised information extraction. This thesis separates the research issues into four areas, covering (i) feature engineering in document summarisation, (ii) traditional static and inflexible summaries, (iii) traditional generic summarisation approaches, and (iv) the need for reference summaries. We propose novel approaches to tackle these challenges, by: i)enabling automatic intelligent feature engineering, ii) enabling flexible and interactive summarisation, iii) utilising intelligent and personalised summarisation approaches. The experimental results prove the efficiency of the proposed approaches compared to other state-of-the-art models. We further propose solutions to the information overload problem in different domains through summarisation, covering network traffic data, health data and business process data.

Knowledge Graph Augmented Political Perspective Detection in News Media Artificial Intelligence

Identifying political perspective in news media has become an important task due to the rapid growth of political commentary and the increasingly polarized ideologies. Previous approaches only focus on leveraging the semantic information and leaves out the rich social and political context that helps individuals understand political stances. In this paper, we propose a perspective detection method that incorporates external knowledge of real-world politics. Specifically, we construct a contemporary political knowledge graph with 1,071 entities and 10,703 triples. We then build a heterogeneous information network for each news document that jointly models article semantics and external knowledge in knowledge graphs. Finally, we apply gated relational graph convolutional networks and conduct political perspective detection as graph-level classification. Extensive experiments show that our method achieves the best performance and outperforms state-of-the-art methods by 5.49\%. Numerous ablation studies further bear out the necessity of external knowledge and the effectiveness of our graph-based approach.

Leveraging Commonsense Knowledge on Classifying False News and Determining Checkworthiness of Claims Artificial Intelligence

Widespread and rapid dissemination of false news has made fact-checking an indispensable requirement. Given its time-consuming and labor-intensive nature, the task calls for an automated support to meet the demand. In this paper, we propose to leverage commonsense knowledge for the tasks of false news classification and check-worthy claim detection. Arguing that commonsense knowledge is a factor in human believability, we fine-tune the BERT language model with a commonsense question answering task and the aforementioned tasks in a multi-task learning environment. For predicting fine-grained false news types, we compare the proposed fine-tuned model's performance with the false news classification models on a public dataset as well as a newly collected dataset. We compare the model's performance with the single-task BERT model and a state-of-the-art check-worthy claim detection tool to evaluate the check-worthy claim detection. Our experimental analysis demonstrates that commonsense knowledge can improve performance in both tasks.

Fake News and Phishing Detection Using a Machine Learning Trained Expert System Artificial Intelligence

Expert systems have been used to enable computers to make recommendations and decisions. This paper presents the use of a machine learning trained expert system (MLES) for phishing site detection and fake news detection. Both topics share a similar goal: to design a rule-fact network that allows a computer to make explainable decisions like domain experts in each respective area. The phishing website detection study uses a MLES to detect potential phishing websites by analyzing site properties (like URL length and expiration time). The fake news detection study uses a MLES rule-fact network to gauge news story truthfulness based on factors such as emotion, the speaker's political affiliation status, and job. The two studies use different MLES network implementations, which are presented and compared herein. The fake news study utilized a more linear design while the phishing project utilized a more complex connection structure. Both networks' inputs are based on commonly available data sets.

Scientists use machine learning to speed discovery of metallic glass


Blend two or three metals together and you get an alloy that usually looks and acts like a metal, with its atoms arranged in rigid geometric patterns. But once in a while, under just the right conditions, you get something entirely new: a futuristic alloy called metallic glass that's amorphous, with its atoms arranged every which way, much like the atoms of the glass in a window. Its glassy nature makes it stronger and lighter than today's best steel, plus it stands up better to corrosion and wear. Even though metallic glass shows a lot of promise as a protective coating and alternative to steel, only a few thousand of the millions of possible combinations of ingredients have been evaluated over the past 50 years, and only a handful developed to the point that they may become useful. Now a group led by scientists at the Department of Energy's SLAC National Accelerator Laboratory, the National Institute of Standards and Technology (NIST) and Northwestern University has reported a shortcut for discovering and improving metallic glass -- and, by extension, other elusive materials -- at a fraction of the time and cost.

DEAP-FAKED: Knowledge Graph based Approach for Fake News Detection Artificial Intelligence

Fake News on social media platforms has attracted a lot of attention in recent times, primarily for events related to politics (2016 US Presidential elections), healthcare (infodemic during COVID-19), to name a few. Various methods have been proposed for detecting Fake News. The approaches span from exploiting techniques related to network analysis, Natural Language Processing (NLP), and the usage of Graph Neural Networks (GNNs). In this work, we propose DEAP-FAKED, a knowleDgE grAPh FAKe nEws Detection framework for identifying Fake News. Our approach is a combination of the NLP -- where we encode the news content, and the GNN technique -- where we encode the Knowledge Graph (KG). A variety of these encodings provides a complementary advantage to our detector. We evaluate our framework using two publicly available datasets containing articles from domains such as politics, business, technology, and healthcare. As part of dataset pre-processing, we also remove the bias, such as the source of the articles, which could impact the performance of the models. DEAP-FAKED obtains an F1-score of 88% and 78% for the two datasets, which is an improvement of 21%, and 3% respectively, which shows the effectiveness of the approach.

Dataset of Propaganda Techniques of the State-Sponsored Information Operation of the People's Republic of China Artificial Intelligence

The digital media, identified as computational propaganda provides a pathway for propaganda to expand its reach without limit. State-backed propaganda aims to shape the audiences' cognition toward entities in favor of a certain political party or authority. Furthermore, it has become part of modern information warfare used in order to gain an advantage over opponents. Most of the current studies focus on using machine learning, quantitative, and qualitative methods to distinguish if a certain piece of information on social media is propaganda. Mainly conducted on English content, but very little research addresses Chinese Mandarin content. From propaganda detection, we want to go one step further to provide more fine-grained information on propaganda techniques that are applied. In this research, we aim to bridge the information gap by providing a multi-labeled propaganda techniques dataset in Mandarin based on a state-backed information operation dataset provided by Twitter. In addition to presenting the dataset, we apply a multi-label text classification using fine-tuned BERT. Potentially this could help future research in detecting state-backed propaganda online especially in a cross-lingual context and cross platforms identity consolidation.

Fingerprinting Fine-tuned Language Models in the Wild Artificial Intelligence

There are concerns that the ability of language models (LMs) to generate high quality synthetic text can be misused to launch spam, disinformation, or propaganda. Therefore, the research community is actively working on developing approaches to detect whether a given text is organic or synthetic. While this is a useful first step, it is important to be able to further fingerprint the author LM to attribute its origin. Prior work on fingerprinting LMs is limited to attributing synthetic text generated by a handful (usually < 10) of pre-trained LMs. However, LMs such as GPT2 are commonly fine-tuned in a myriad of ways (e.g., on a domain-specific text corpus) before being used to generate synthetic text. It is challenging to fingerprinting fine-tuned LMs because the universe of fine-tuned LMs is much larger in realistic scenarios. To address this challenge, we study the problem of large-scale fingerprinting of fine-tuned LMs in the wild. Using a real-world dataset of synthetic text generated by 108 different fine-tuned LMs, we conduct comprehensive experiments to demonstrate the limitations of existing fingerprinting approaches. Our results show that fine-tuning itself is the most effective in attributing the synthetic text generated by fine-tuned LMs.

Defending Democracy: Using Deep Learning to Identify and Prevent Misinformation Artificial Intelligence

The rise in online misinformation in recent years threatens democracies by distorting authentic public discourse and causing confusion, fear, and even, in extreme cases, violence. There is a need to understand the spread of false content through online networks for developing interventions that disrupt misinformation before it achieves virality. Using a Deep Bidirectional Transformer for Language Understanding (BERT) and propagation graphs, this study classifies and visualizes the spread of misinformation on a social media network using publicly available Twitter data. The results confirm prior research around user clusters and the virality of false content while improving the precision of deep learning models for misinformation detection. The study further demonstrates the suitability of BERT for providing a scalable model for false information detection, which can contribute to the development of more timely and accurate interventions to slow the spread of misinformation in online environments.