Well File:


Interactive Cognitive Assessment Tools: A Case Study on Digital Pens for the Clinical Assessment of Dementia

arXiv.org Artificial Intelligence

Interactive cognitive assessment tools may be valuable for doctors and therapists to reduce costs and improve quality in healthcare systems. Use cases and scenarios include the assessment of dementia. In this paper, we present our approach to the semi-automatic assessment of dementia. We describe a case study with digital pens for the patients including background, problem description and possible solutions. We conclude with lessons learned when implementing digital tests, and a generalisation for use outside the cognitive impairments field.

A polynomial-time relaxation of the Gromov-Hausdorff distance

arXiv.org Machine Learning

The Gromov-Hausdorff distance provides a metric on the set of isometry classes of compact metric spaces. Unfortunately, computing this metric directly is believed to be computationally intractable. Motivated by applications in shape matching and point-cloud comparison, we study a semidefinite programming relaxation of the Gromov-Hausdorff metric. This relaxation can be computed in polynomial time, and somewhat surprisingly is itself a pseudometric. We describe the induced topology on the set of compact metric spaces. Finally, we demonstrate the numerical performance of various algorithms for computing the relaxed distance and apply these algorithms to several relevant data sets. In particular we propose a greedy algorithm for finding the best correspondence between finite metric spaces that can handle hundreds of points.

Learning from Neighboring Strokes: Combining Appearance and Context for Multi-Domain Sketch Recognition

Neural Information Processing Systems

We propose a new sketch recognition framework that combines a rich representation of low level visual appearance with a graphical model for capturing high level relationships between symbols. This joint model of appearance and context allows our framework to be less sensitive to noise and drawing variations, improving accuracy and robustness. The result is a recognizer that is better able to handle the wide range of drawing styles found in messy freehand sketches. We evaluate our work on two real-world domains, molecular diagrams and electrical circuit diagrams, and show that our combined approach significantly improves recognition performance.