Well File:

Results


How Artificial Intelligence and Machine Learning Impact Project

#artificialintelligence

In this article, we will discuss what I believe is one of the most significant issues facing the future of project management. Let me start by asking 3 questions. If you're a project manager and don't know the answers to those three questions, I suggest you read further because your career might depend on knowing them. So why is the 5th of December 2017 a significant date for those of us who take even a cursory interest in the development of AI and machine learning or what we call ML? The 5th of December 2017 was a pretty special day; on that day, one computer beat another computer at the Top Chess Engine Championship.


Reclaim Internet Greatness

Communications of the ACM

His concern is warranted and will require us to strike a balance between protecting the democratic and egalitarian values that made the Internet great to begin with while ensuring those values are used for good. The fundamental issue, then, in creating a 21st-century Internet becomes what changes are warranted and who will be responsible for defining and administering them. On the technology dimension, computer scientists and engineers must develop smarter systems for detecting, addressing, and preventing malicious content on the Web. Cerf's argument on behalf of user training is helpful but will not ultimately solve the problem of an untrustworthy, ungovernable, potentially malicious network. I myself recently fell for a phishing attack, which only proves that today's attacks can fool even savvy, experienced users.



Cognitive collaboration

#artificialintelligence

Although artificial intelligence (AI) has experienced a number of "springs" and "winters" in its roughly 60-year history, it is safe to expect the current AI spring to be both lasting and fertile. Applications that seemed like science fiction a decade ago are becoming science fact at a pace that has surprised even many experts. The stage for the current AI revival was set in 2011 with the televised triumph of the IBM Watson computer system over former Jeopardy! This watershed moment has been followed rapid-fire by a sequence of striking breakthroughs, many involving the machine learning technique known as deep learning. Computer algorithms now beat humans at games of skill, master video games with no prior instruction, 3D-print original paintings in the style of Rembrandt, grade student papers, cook meals, vacuum floors, and drive cars.1 All of this has created considerable uncertainty about our future relationship with machines, the prospect of technological unemployment, and even the very fate of humanity. Regarding the latter topic, Elon Musk has described AI "our biggest existential threat." Stephen Hawking warned that "The development of full artificial intelligence could spell the end of the human race." In his widely discussed book Superintelligence, the philosopher Nick Bostrom discusses the possibility of a kind of technological "singularity" at which point the general cognitive abilities of computers exceed those of humans.2 Discussions of these issues are often muddied by the tacit assumption that, because computers outperform humans at various circumscribed tasks, they will soon be able to "outthink" us more generally. Continual rapid growth in computing power and AI breakthroughs notwithstanding, this premise is far from obvious.


Cognitive collaboration

#artificialintelligence

Although artificial intelligence (AI) has experienced a number of "springs" and "winters" in its roughly 60-year history, it is safe to expect the current AI spring to be both lasting and fertile. Applications that seemed like science fiction a decade ago are becoming science fact at a pace that has surprised even many experts. The stage for the current AI revival was set in 2011 with the televised triumph of the IBM Watson computer system over former Jeopardy! This watershed moment has been followed rapid-fire by a sequence of striking breakthroughs, many involving the machine learning technique known as deep learning. Computer algorithms now beat humans at games of skill, master video games with no prior instruction, 3D-print original paintings in the style of Rembrandt, grade student papers, cook meals, vacuum floors, and drive cars.1 All of this has created considerable uncertainty about our future relationship with machines, the prospect of technological unemployment, and even the very fate of humanity. Regarding the latter topic, Elon Musk has described AI "our biggest existential threat." Stephen Hawking warned that "The development of full artificial intelligence could spell the end of the human race." In his widely discussed book Superintelligence, the philosopher Nick Bostrom discusses the possibility of a kind of technological "singularity" at which point the general cognitive abilities of computers exceed those of humans.2 Discussions of these issues are often muddied by the tacit assumption that, because computers outperform humans at various circumscribed tasks, they will soon be able to "outthink" us more generally. Continual rapid growth in computing power and AI breakthroughs notwithstanding, this premise is far from obvious.


Long Promised Artificial Intelligence Is Looming--and It's Going to Be Amazing

#artificialintelligence

We have been hearing predictions for decades of a takeover of the world by artificial intelligence. In 1957, Herbert A. Simon predicted that within 10 years a digital computer would be the world's chess champion. That didn't happen until 1996. And despite Marvin Minsky's 1970 prediction that "in from three to eight years we will have a machine with the general intelligence of an average human being," we still consider that a feat of science fiction. The pioneers of artificial intelligence were surely off on the timing, but they weren't wrong; AI is coming.


Long Promised Artificial Intelligence Is Looming--and It's Going to Be Amazing

#artificialintelligence

We have been hearing predictions for decades of a takeover of the world by artificial intelligence. In 1957, Herbert A. Simon predicted that within 10 years a digital computer would be the world's chess champion. That didn't happen until 1996. And despite Marvin Minsky's 1970 prediction that "in from three to eight years we will have a machine with the general intelligence of an average human being," we still consider that a feat of science fiction. The pioneers of artificial intelligence were surely off on the timing, but they weren't wrong; AI is coming.


Long Promised Artificial Intelligence Is Looming--and It's Going to Be Amazing

#artificialintelligence

We have been hearing predictions for decades of a takeover of the world by artificial intelligence. In 1957, Herbert A. Simon predicted that within 10 years a digital computer would be the world's chess champion. That didn't happen until 1996. And despite Marvin Minsky's 1970 prediction that "in from three to eight years we will have a machine with the general intelligence of an average human being," we still consider that a feat of science fiction. The pioneers of artificial intelligence were surely off on the timing, but they weren't wrong; AI is coming.


Long Promised Artificial Intelligence Is Looming--and It's Going to Be Amazing

#artificialintelligence

We have been hearing predictions for decades of a takeover of the world by artificial intelligence. In 1957, Herbert A. Simon predicted that within 10 years a digital computer would be the world's chess champion. That didn't happen until 1996. And despite Marvin Minsky's 1970 prediction that "in from three to eight years we will have a machine with the general intelligence of an average human being," we still consider that a feat of science fiction. The pioneers of artificial intelligence were surely off on the timing, but they weren't wrong; AI is coming.


Notes on a New Philosophy of Empirical Science

arXiv.org Machine Learning

This book presents a methodology and philosophy of empirical science based on large scale lossless data compression. In this view a theory is scientific if it can be used to build a data compression program, and it is valuable if it can compress a standard benchmark database to a small size, taking into account the length of the compressor itself. This methodology therefore includes an Occam principle as well as a solution to the problem of demarcation. Because of the fundamental difficulty of lossless compression, this type of research must be empirical in nature: compression can only be achieved by discovering and characterizing empirical regularities in the data. Because of this, the philosophy provides a way to reformulate fields such as computer vision and computational linguistics as empirical sciences: the former by attempting to compress databases of natural images, the latter by attempting to compress large text databases. The book argues that the rigor and objectivity of the compression principle should set the stage for systematic progress in these fields. The argument is especially strong in the context of computer vision, which is plagued by chronic problems of evaluation. The book also considers the field of machine learning. Here the traditional approach requires that the models proposed to solve learning problems be extremely simple, in order to avoid overfitting. However, the world may contain intrinsically complex phenomena, which would require complex models to understand. The compression philosophy can justify complex models because of the large quantity of data being modeled (if the target database is 100 Gb, it is easy to justify a 10 Mb model). The complex models and abstractions learned on the basis of the raw data (images, language, etc) can then be reused to solve any specific learning problem, such as face recognition or machine translation.