Plotting

Results


Analyzing 25 Years of Privacy Policies with Machine Learning

#artificialintelligence

A recent study has used machine learning analysis techniques to chart the readability, usefulness, length and complexity of more than 50,000 privacy policies on popular websites in a period covering 25 years from 1996 to 2021. The research concludes that the average reader would need to devote 400 hours of'annual reading time' (more than an hour a day) in order to penetrate the growing word counts, obfuscating language and vague language use that characterize the modern privacy policies of some of the most-frequented websites. 'The average policy length has almost doubled in the last ten years, with 2159 words in March 2011 and 4191 words in March 2021, and almost quadrupled since 2000 (1146 words).' The mean word count and sentence count among the corpus studied, over a 25 year period. Though the rate of increase in length spiked when the GDPR and the California Consumer Privacy Act (CCPA) protections came into force, the paper discounts these variations as'small effect sizes' which appear to be insignificant against the broader long-term trend.


ML for Algorithmic Trading, with Stefan Jansen

#artificialintelligence

Listen to this episode on Anchor FM. Stefan has been a partner in an investment firm where he assisted in building data infrastructure and predictive analytics practice. He accomplished this when data science was only beginning to be taken seriously in the investment industry. You won't want to miss this opportunity to learn from Stefan's experiences. Machines learning from data will continually improve in achieving performance measures.


AI/ML, Data Science Jobs #hiring

#artificialintelligence

Select Folder Enter Subject * Enter Description * Close Send Message Send Invitation Category Data Scientist Senior Data Scientist Software Engineer Data Engineer Machine Learning Engineer Data Science Intern Data Scientist Intern Lead Data Scientist Data Science Manager Senior Data Engineer Data Analyst Internship Software Engineer Intern Research Intern Data Analyst Senior Software Engineer Business Analyst Intern Senior Machine Learning Engineer Engineering Manager Principal Data Scientist Python Engineer Research Scientist Director of Data Science Senior Data Analyst Software Engineering Intern Data Science Analyst AI Engineer Machine Learning Software Engineer Company Google Apple Inc. PayPal Amazon Web Services Coursera Meta Platforms, Inc. Dell Technologies Twitter McKinsey & Company Deloitte Salesforce, Inc. If you have forgotten your password you can reset it here.


Deepfake attacks can easily trick facial recognition

#artificialintelligence

In brief Miscreants can easily steal someone else's identity by tricking live facial recognition software using deepfakes, according to a new report. Sensity AI, a startup focused on tackling identity fraud, carried out a series of pretend attacks. Engineers scanned the image of someone from an ID card, and mapped their likeness onto another person's face. Sensity then tested whether they could breach live facial recognition systems by tricking them into believing the pretend attacker is a real user. So-called "liveness tests" try to authenticate identities in real-time, relying on images or video streams from cameras like face recognition used to unlock mobile phones, for example.


The 30 top artificial intelligence companies most well founded

#artificialintelligence

Artificial intelligence (AI) is currently one of the most disruptive technologies, and it is a great means for startups to achieve their hyper-growth goals. Artificial intelligence has numerous applications in fields such as big data, computer vision, and natural language processing, and is revolutionizing businesses, industries, and people's lives. Among the most well-funded and promising independent startups, the majority of the top Artificial Intelligence companies are from the US or China, with many more countries participating. The benefits of AI in many industries are evident in these two key countries, but each country seems to have slightly different concerns. The largest AI startups in the U.S. are particularly present in the areas of big data analytics and process automation for business, autonomous driving and biotechnology.


Data Centers Need to Go Green - And AI Can Help

#artificialintelligence

Climate change is here, and it's set to get much worse, experts say – and as a result, many industries have pledged to reduce their carbon footprints in the coming decades. Now, the recent jump in energy prices due mainly to the war in Ukraine, also emphasizes the need for development of cheap, renewable forms of energy from freely available sources, like the sun and wind – as opposed to reliance on fossil fuels controlled by nation-states. But going green is easier for some industries than for others,- and one area where it is likely to be a significant challenge is in data centers, which require huge amounts of electricity to cool off, in some cases, the millions of computers deployed. Growing consumer demand to reduce carbon output, along with rules that regulators are likely to impose in the near future, require companies that run data centers to take immediate steps to go green. And artificial intelligence, machine learning, neural networks, and other related technologies can help enterprises of all kinds achieve that goal, without having to spend huge sums to accomplish it.


SoundWatch

Communications of the ACM

We present SoundWatch, a smartwatch-based deep learning application to sense, classify, and provide feedback about sounds occurring in the environment.


Responsible Data Management

Communications of the ACM

Incorporating ethics and legal compliance into data-driven algorithmic systems has been attracting significant attention from the computing research community, most notably under the umbrella of fair8 and interpretable16 machine learning. While important, much of this work has been limited in scope to the "last mile" of data analysis and has disregarded both the system's design, development, and use life cycle (What are we automating and why? Is the system working as intended? Are there any unforeseen consequences post-deployment?) and the data life cycle (Where did the data come from? How long is it valid and appropriate?). In this article, we argue two points. First, the decisions we make during data collection and preparation profoundly impact the robustness, fairness, and interpretability of the systems we build. Second, our responsibility for the operation of these systems does not stop when they are deployed. To make our discussion concrete, consider the use of predictive analytics in hiring. Automated hiring systems are seeing ever broader use and are as varied as the hiring practices themselves, ranging from resume screeners that claim to identify promising applicantsa to video and voice analysis tools that facilitate the interview processb and game-based assessments that promise to surface personality traits indicative of future success.c Bogen and Rieke5 describe the hiring process from the employer's point of view as a series of decisions that forms a funnel, with stages corresponding to sourcing, screening, interviewing, and selection. The hiring funnel is an example of an automated decision system--a data-driven, algorithm-assisted process that culminates in job offers to some candidates and rejections to others. The popularity of automated hiring systems is due in no small part to our collective quest for efficiency.


Top Professional Careers In AI (Artificial Intelligence)

#artificialintelligence

Technology is not showing signs of slowing down any time soon. As we move into cloud computing, big data, natural language processing and artificial intelligence, the employment sector is gearing up for a big boost in the number of opportunities. Organisations such as Google, Microsoft, Facebook and Apple are aggressively hiring people with expertise in these domains, which makes them highly lucrative. Artificial intelligence is particularly on the cusp of a breakthrough. Technologies such as machine learning, neural networks, genetic algorithms and deep learning are receiving a lot of spotlight.


The Future of Data Science and Machine Learning at Enterprise Scale - Qubole

#artificialintelligence

Data Science, Artificial Intelligence, Analytics, and Machine Learning at the Enterprise scale are terms you've probably heard before. But what do they mean? We break it down for you in this blog. So, What Is Data Science? Data Science is a series of disciplines, technology, skills, expertise, and knowledge that encompass one thing: obtaining and preparing data for analysis.