Goto

Collaborating Authors

Philosophy: Overviews


When Creators Meet the Metaverse: A Survey on Computational Arts

arXiv.org Artificial Intelligence

The metaverse, enormous virtual-physical cyberspace, has brought unprecedented opportunities for artists to blend every corner of our physical surroundings with digital creativity. This article conducts a comprehensive survey on computational arts, in which seven critical topics are relevant to the metaverse, describing novel artworks in blended virtual-physical realities. The topics first cover the building elements for the metaverse, e.g., virtual scenes and characters, auditory, textual elements. Next, several remarkable types of novel creations in the expanded horizons of metaverse cyberspace have been reflected, such as immersive arts, robotic arts, and other user-centric approaches fuelling contemporary creative outputs. Finally, we propose several research agendas: democratising computational arts, digital privacy, and safety for metaverse artists, ownership recognition for digital artworks, technological challenges, and so on. The survey also serves as introductory material for artists and metaverse technologists to begin creations in the realm of surrealistic cyberspace.


Importance measures derived from random forests: characterisation and extension

arXiv.org Machine Learning

Nowadays new technologies, and especially artificial intelligence, are more and more established in our society. Big data analysis and machine learning, two sub-fields of artificial intelligence, are at the core of many recent breakthroughs in many application fields (e.g., medicine, communication, finance, ...), including some that are strongly related to our day-to-day life (e.g., social networks, computers, smartphones, ...). In machine learning, significant improvements are usually achieved at the price of an increasing computational complexity and thanks to bigger datasets. Currently, cutting-edge models built by the most advanced machine learning algorithms typically became simultaneously very efficient and profitable but also extremely complex. Their complexity is to such an extent that these models are commonly seen as black-boxes providing a prediction or a decision which can not be interpreted or justified. Nevertheless, whether these models are used autonomously or as a simple decision-making support tool, they are already being used in machine learning applications where health and human life are at stake. Therefore, it appears to be an obvious necessity not to blindly believe everything coming out of those models without a detailed understanding of their predictions or decisions. Accordingly, this thesis aims at improving the interpretability of models built by a specific family of machine learning algorithms, the so-called tree-based methods. Several mechanisms have been proposed to interpret these models and we aim along this thesis to improve their understanding, study their properties, and define their limitations.


Conscious AI

arXiv.org Artificial Intelligence

Recent advances in artificial intelligence (AI) have achieved human-scale speed and accuracy for classification tasks. In turn, these capabilities have made AI a viable replacement for many human activities that at their core involve classification, such as basic mechanical and analytical tasks in low-level service jobs. Current systems do not need to be conscious to recognize patterns and classify them. However, for AI to progress to more complicated tasks requiring intuition and empathy, it must develop capabilities such as metathinking, creativity, and empathy akin to human self-awareness or consciousness. We contend that such a paradigm shift is possible only through a fundamental shift in the state of artificial intelligence toward consciousness, a shift similar to what took place for humans through the process of natural selection and evolution. As such, this paper aims to theoretically explore the requirements for the emergence of consciousness in AI. It also provides a principled understanding of how conscious AI can be detected and how it might be manifested in contrast to the dominant paradigm that seeks to ultimately create machines that are linguistically indistinguishable from humans.