Chess: Overviews
Notes on a New Philosophy of Empirical Science
This book presents a methodology and philosophy of empirical science based on large scale lossless data compression. In this view a theory is scientific if it can be used to build a data compression program, and it is valuable if it can compress a standard benchmark database to a small size, taking into account the length of the compressor itself. This methodology therefore includes an Occam principle as well as a solution to the problem of demarcation. Because of the fundamental difficulty of lossless compression, this type of research must be empirical in nature: compression can only be achieved by discovering and characterizing empirical regularities in the data. Because of this, the philosophy provides a way to reformulate fields such as computer vision and computational linguistics as empirical sciences: the former by attempting to compress databases of natural images, the latter by attempting to compress large text databases. The book argues that the rigor and objectivity of the compression principle should set the stage for systematic progress in these fields. The argument is especially strong in the context of computer vision, which is plagued by chronic problems of evaluation. The book also considers the field of machine learning. Here the traditional approach requires that the models proposed to solve learning problems be extremely simple, in order to avoid overfitting. However, the world may contain intrinsically complex phenomena, which would require complex models to understand. The compression philosophy can justify complex models because of the large quantity of data being modeled (if the target database is 100 Gb, it is easy to justify a 10 Mb model). The complex models and abstractions learned on the basis of the raw data (images, language, etc) can then be reused to solve any specific learning problem, such as face recognition or machine translation.
Verified Null-Move Pruning
David-Tabibi, Omid, Netanyahu, Nathan S.
In this article we review standard null-move pruning and introduce our extended version of it, which we call verified null-move pruning. In verified null-move pruning, whenever the shallow null-move search indicates a fail-high, instead of cutting off the search from the current node, the search is continued with reduced depth. Our experiments with verified null-move pruning show that on average, it constructs a smaller search tree with greater tactical strength in comparison to standard null-move pruning. Moreover, unlike standard null-move pruning, which fails badly in zugzwang positions, verified null-move pruning manages to detect most zugzwangs and in such cases conducts a re-search to obtain the correct result. In addition, verified null-move pruning is very easy to implement, and any standard null-move pruning program can use verified null-move pruning by modifying only a few lines of code.
Artificial Intelligence: Realizing the Ultimate Promises of Computing
Artificial intelligence (AI) is the key technology in many of today's novel applications, ranging from banking systems that detect attempted credit card fraud, to telephone systems that understand speech, to software systems that notice when you're having problems and offer appropriate advice. These technologies would not exist today without the sustained federal support of fundamental AI research over the past three decades.