Goto

Collaborating Authors

Results


How Virtual GPUs Enhance Sharing in Kubernetes for Machine Learning on VMware vSphere

#artificialintelligence

This optimizes the use of the GPU hardware and it can serve more than one user, reducing costs. A basic level of familiarity with the core concepts in Kubernetes and in GPU Acceleration will be useful to the reader of this article. We first look more closely at pods in Kubernetes and how they relate to a GPU. A pod is the unit of deployment, at the lowest level, in Kubernetes. A pod can have one or more containers within it. The lifetime of the containers within a pod tend to be about the same, although one container may start before the others, as the "init" container. You can deploy higher-level objects like Kubernetes services and deployments that have many pods in them. We focus on pods and their use of GPUs in this article. Given access rights to a Tanzu Kubernetes cluster (TKC) running on the VMware vSphere with Tanzu environment (i.e. a set of host servers running the ESXi hypervisor, managed by VMware vCenter), a user can issue the command:


Determining GPU Memory for Machine Learning Applications on VMware vSphere with Tanzu

#artificialintelligence

VMware vSphere with Tanzu provides users with the ability to easily construct a Kubernetes cluster on demand for model development/test or deployment work in machine learning applications. These on-demand clusters are called Tanzu Kubernetes clusters (TKC) and their participating nodes, just like VMs, can be sized as required using a YAML specification. In a TKC running on vSphere with Tanzu, each Kubernetes node is implemented as a virtual machine. Kubernetes pods are scheduled onto these nodes or VMs by the Kubernetes scheduler running in the Control Plane VMs in that cluster. To accelerate machine learning training or inference code, one or more of these pods require a GPU or virtual GPU (vGPU) to be associated with them.


Why GPUs Are Flourishing in the Data Center - DataScienceCentral.com

#artificialintelligence

Digital transformation is driving all kinds of changes in enterprises, including the growing use of AI. Though AI and data centers have existed for decades, graphics processing units (GPUs) in data centers are a fairly recent development. "GPUs have high levels of parallelism and can apply math operations to highly parallel datasets. CPUs can perform the same task but do not have the parallelism of GPUs so they're not as efficient at these tasks," said Alan Priestley, vice president analyst of emerging technologies and trends at Gartner. He believes that GPUs are best-considered workload accelerators that are optimized for specific sets of operations to complement CPUs.


Exploring the Impact of Virtualization on the Usability of the Deep Learning Applications

arXiv.org Artificial Intelligence

Deep Learning-based (DL) applications are becoming increasingly popular and advancing at an unprecedented pace. While many research works are being undertaken to enhance Deep Neural Networks (DNN) -- the centerpiece of DL applications -- practical deployment challenges of these applications in the Cloud and Edge systems, and their impact on the usability of the applications have not been sufficiently investigated. In particular, the impact of deploying different virtualization platforms, offered by the Cloud and Edge, on the usability of DL applications (in terms of the End-to-End (E2E) inference time) has remained an open question. Importantly, resource elasticity (by means of scale-up), CPU pinning, and processor type (CPU vs GPU) configurations have shown to be influential on the virtualization overhead. Accordingly, the goal of this research is to study the impact of these potentially decisive deployment options on the E2E performance, thus, usability of the DL applications. To that end, we measure the impact of four popular execution platforms (namely, bare-metal, virtual machine (VM), container, and container in VM) on the E2E inference time of four types of DL applications, upon changing processor configuration (scale-up, CPU pinning) and processor types. This study reveals a set of interesting and sometimes counter-intuitive findings that can be used as best practices by Cloud solution architects to efficiently deploy DL applications in various systems. The notable finding is that the solution architects must be aware of the DL application characteristics, particularly, their pre- and post-processing requirements, to be able to optimally choose and configure an execution platform, determine the use of GPU, and decide the efficient scale-up range.


Nvidia and VMware team up to help enterprises scale up AI development

#artificialintelligence

Enterprises can begin to run trials of their AI projects using VMware vSphere with Tanzu together with Nvidia AI Enterprise software suite, as part of moves by both companies to further simplify AI development and application management. By extending testing to vSphere with Tanzu, Nvidia boasts it will enable developers to run AI workloads on Kubernetes containers within their existing VMware environments. The software suite will run on mainstream Nvidia-certified systems, the company said, noting it would provide a complete software and hardware stack suitable for AI development. "Nvidia has gone and invested in building all of the next-generation cloud application-level components, where you can now take the NGC libraries, which are container-based, and run those in a Kubernetes orchestrated VMware environment, so you're getting the ability now to go and bridge the world of developers and infrastructure," VMware cloud infrastructure business group marketing VP Lee Caswell told media. The move comes off the back of VMware announcing Nvidia AI Enterprise in March.


Nvidia and VMware team up to help enterprises scale up AI development

ZDNet

Enterprises can begin to run trials of their AI projects using VMware vSphere with Tanzu together with Nvidia AI Enterprises software suite, as part of moves by both companies to further simplify AI development and application management. By extending testing to vSphere with Tanzu, Nvidia boasts it will enable developers to run AI workloads on Kubernetes containers within their existing VMware environments. The software suite will run on mainstream Nvidia-certified systems, the company said, noting it would provide a complete software and hardware stack suitable for AI development. "Nvidia has gone and invested in building all of the next-generation cloud application-level components, where you can now take the NGC libraries, which are container-based, and run those in a Kubernetes orchestrated VMware environment, so you're getting the ability now to go and bridge the world of developers and infrastructure," VMware cloud infrastructure business group marketing VP Lee Caswell told media. The move comes off the back of VMware announcing Nvidia AI Enterprise in March.


The Top 100 Software Companies of 2021

#artificialintelligence

The Software Report is pleased to announce The Top 100 Software Companies of 2021. This year's awardee list is comprised of a wide range of companies from the most well-known such as Microsoft, Adobe, and Salesforce to the relatively newer but rapidly growing - Qualtrics, Atlassian, and Asana. A good number of awardees may be new names to some but that should be no surprise given software has always been an industry of startups that seemingly came out of nowhere to create and dominate a new space. Software has become the backbone of our economy. From large enterprises to small businesses, most all rely on software whether for accounting, marketing, sales, supply chain, or a myriad of other functions. Software has become the dominant industry of our time and as such, we place a significance on highlighting the best companies leading the industry forward. The following awardees were nominated and selected based on a thorough evaluation process. Among the key criteria considered were ...


Steven Fleischman on LinkedIn: Industry Standard AI infrastructure powered by HPE, VMware, and NVIDIA

#artificialintelligence

AI technology used to be limited to advanced research teams. It is now a key capability for many businesses to improve sales and product quality, provide deep personalisation and new interfaces, and to improve safety and reduce risk. AI is materially changing how we interact with and benefit from technology. Having ready access to and consistent operational control over AI infrastructure is a game changer that democratizes AI for enterprises and opens access to many new use cases.


IBM and AMD Begin Cooperation on Cybersecurity and AI

#artificialintelligence

International Business Machines (IBM) - Get Report and Advanced Micro Devices (AMD) - Get Report said they began a development program focused on cybersecurity and artificial intelligence. The development agreement will build on "open-source software, open standards, and open system architectures to drive confidential computing in hybrid cloud environments," the companies said in a statement. The agreement also will "support a broad range of accelerators across high-performance computing and enterprise critical capabilities, such as virtualization and encryption," they said. AMD, Santa Clara, Calif., is one of the world's biggest chipmakers and is thriving. IBM, the storied Armonk, N.Y., technology services company, has struggled to regain the glory of its past, when it led the computer-making industry.


VMware CEO on preparing for a pandemic no one knew was coming

ZDNet

VMware's VMworld 2020 was, like many other annual tech events, forced to shift online this year. But with a slew of announcements made during the event centred on the future of work and succeeding in this new paradigm, it was almost like VMware was ready for a rapid shift in its customer's operations. "My job every day is position VMware so that we're better positioned for the strategic future, where technologies are going, and clearly this year, as we would say, for an unpredictable world," VMware CEO Pat Gelsinger said. Speaking with ZDNet, Gelsinger said his company "flipped" to remote working over a weekend and "hasn't looked back". The lessons the company learned internally were then translated to helping customers.