Goto

Collaborating Authors

Results


Image Classification in Machine Learning [Intro + Tutorial]

#artificialintelligence

Image Classification is one of the most fundamental tasks in computer vision. It has revolutionized and propelled technological advancements in the most prominent fields, including the automobile industry, healthcare, manufacturing, and more. How does Image Classification work, and what are its benefits and limitations? Keep reading, and in the next few minutes, you'll learn the following: Image Classification (often referred to as Image Recognition) is the task of associating one (single-label classification) or more (multi-label classification) labels to a given image. Here's how it looks like in practice when classifying different birds-- images are tagged using V7. Image Classification is a solid task to benchmark modern architectures and methodologies in the domain of computer vision. Now let's briefly discuss two types of Image Classification, depending on the complexity of the classification task at hand. Single-label classification is the most common classification task in supervised Image Classification.


Artificial Intellgence -- Application in Life Sciences and Beyond. The Upper Rhine Artificial Intelligence Symposium UR-AI 2021

arXiv.org Artificial Intelligence

The TriRhenaTech alliance presents the accepted papers of the 'Upper-Rhine Artificial Intelligence Symposium' held on October 27th 2021 in Kaiserslautern, Germany. Topics of the conference are applications of Artificial Intellgence in life sciences, intelligent systems, industry 4.0, mobility and others. The TriRhenaTech alliance is a network of universities in the Upper-Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, Offenburg and Trier, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.


Deep AUC Maximization for Medical Image Classification: Challenges and Opportunities

arXiv.org Artificial Intelligence

In this extended abstract, we will present and discuss opportunities and challenges brought about by a new deep learning method by AUC maximization (aka \underline{\bf D}eep \underline{\bf A}UC \underline{\bf M}aximization or {\bf DAM}) for medical image classification. Since AUC (aka area under ROC curve) is a standard performance measure for medical image classification, hence directly optimizing AUC could achieve a better performance for learning a deep neural network than minimizing a traditional loss function (e.g., cross-entropy loss). Recently, there emerges a trend of using deep AUC maximization for large-scale medical image classification. In this paper, we will discuss these recent results by highlighting (i) the advancements brought by stochastic non-convex optimization algorithms for DAM; (ii) the promising results on various medical image classification problems. Then, we will discuss challenges and opportunities of DAM for medical image classification from three perspectives, feature learning, large-scale optimization, and learning trustworthy AI models.


FUTURE-AI: Guiding Principles and Consensus Recommendations for Trustworthy Artificial Intelligence in Future Medical Imaging

arXiv.org Artificial Intelligence

The recent advancements in artificial intelligence (AI) combined with the extensive amount of data generated by today's clinical systems, has led to the development of imaging AI solutions across the whole value chain of medical imaging, including image reconstruction, medical image segmentation, image-based diagnosis and treatment planning. Notwithstanding the successes and future potential of AI in medical imaging, many stakeholders are concerned of the potential risks and ethical implications of imaging AI solutions, which are perceived as complex, opaque, and difficult to comprehend, utilise, and trust in critical clinical applications. Despite these concerns and risks, there are currently no concrete guidelines and best practices for guiding future AI developments in medical imaging towards increased trust, safety and adoption. To bridge this gap, this paper introduces a careful selection of guiding principles drawn from the accumulated experiences, consensus, and best practices from five large European projects on AI in Health Imaging. These guiding principles are named FUTURE-AI and its building blocks consist of (i) Fairness, (ii) Universality, (iii) Traceability, (iv) Usability, (v) Robustness and (vi) Explainability. In a step-by-step approach, these guidelines are further translated into a framework of concrete recommendations for specifying, developing, evaluating, and deploying technically, clinically and ethically trustworthy AI solutions into clinical practice.


Multimodal Classification: Current Landscape, Taxonomy and Future Directions

arXiv.org Artificial Intelligence

Multimodal classification research has been gaining popularity in many domains that collect more data from multiple sources including satellite imagery, biometrics, and medicine. However, the lack of consistent terminology and architectural descriptions makes it difficult to compare different existing solutions. We address these challenges by proposing a new taxonomy for describing such systems based on trends found in recent publications on multimodal classification. Many of the most difficult aspects of unimodal classification have not yet been fully addressed for multimodal datasets including big data, class imbalance, and instance level difficulty. We also provide a discussion of these challenges and future directions.


AI-based Aortic Vessel Tree Segmentation for Cardiovascular Diseases Treatment: Status Quo

arXiv.org Artificial Intelligence

The aortic vessel tree is composed of the aorta and its branching arteries, and plays a key role in supplying the whole body with blood. Aortic diseases, like aneurysms or dissections, can lead to an aortic rupture, whose treatment with open surgery is highly risky. Therefore, patients commonly undergo drug treatment under constant monitoring, which requires regular inspections of the vessels through imaging. The standard imaging modality for diagnosis and monitoring is computed tomography (CT), which can provide a detailed picture of the aorta and its branching vessels if combined with a contrast agent, resulting in a CT angiography (CTA). Optimally, the whole aortic vessel tree geometry from consecutive CTAs, are overlaid and compared. This allows to not only detect changes in the aorta, but also more peripheral vessel tree changes, caused by the primary pathology or newly developed. When performed manually, this reconstruction requires slice by slice contouring, which could easily take a whole day for a single aortic vessel tree and, hence, is not feasible in clinical practice. Automatic or semi-automatic vessel tree segmentation algorithms, on the other hand, can complete this task in a fraction of the manual execution time and run in parallel to the clinical routine of the clinicians. In this paper, we systematically review computing techniques for the automatic and semi-automatic segmentation of the aortic vessel tree. The review concludes with an in-depth discussion on how close these state-of-the-art approaches are to an application in clinical practice and how active this research field is, taking into account the number of publications, datasets and challenges.


3D AGSE-VNet: An Automatic Brain Tumor MRI Data Segmentation Framework

arXiv.org Artificial Intelligence

Background: Glioma is the most common brain malignant tumor, with a high morbidity rate and a mortality rate of more than three percent, which seriously endangers human health. The main method of acquiring brain tumors in the clinic is MRI. Segmentation of brain tumor regions from multi-modal MRI scan images is helpful for treatment inspection, post-diagnosis monitoring, and effect evaluation of patients. However, the common operation in clinical brain tumor segmentation is still manual segmentation, lead to its time-consuming and large performance difference between different operators, a consistent and accurate automatic segmentation method is urgently needed. Methods: To meet the above challenges, we propose an automatic brain tumor MRI data segmentation framework which is called AGSE-VNet. In our study, the Squeeze and Excite (SE) module is added to each encoder, the Attention Guide Filter (AG) module is added to each decoder, using the channel relationship to automatically enhance the useful information in the channel to suppress the useless information, and use the attention mechanism to guide the edge information and remove the influence of irrelevant information such as noise. Results: We used the BraTS2020 challenge online verification tool to evaluate our approach. The focus of verification is that the Dice scores of the whole tumor (WT), tumor core (TC) and enhanced tumor (ET) are 0.68, 0.85 and 0.70, respectively. Conclusion: Although MRI images have different intensities, AGSE-VNet is not affected by the size of the tumor, and can more accurately extract the features of the three regions, it has achieved impressive results and made outstanding contributions to the clinical diagnosis and treatment of brain tumor patients.


A Comprehensive Review of Computer-aided Whole-slide Image Analysis: from Datasets to Feature Extraction, Segmentation, Classification, and Detection Approaches

arXiv.org Artificial Intelligence

With the development of computer-aided diagnosis (CAD) and image scanning technology, Whole-slide Image (WSI) scanners are widely used in the field of pathological diagnosis. Therefore, WSI analysis has become the key to modern digital pathology. Since 2004, WSI has been used more and more in CAD. Since machine vision methods are usually based on semi-automatic or fully automatic computers, they are highly efficient and labor-saving. The combination of WSI and CAD technologies for segmentation, classification, and detection helps histopathologists obtain more stable and quantitative analysis results, save labor costs and improve diagnosis objectivity. This paper reviews the methods of WSI analysis based on machine learning. Firstly, the development status of WSI and CAD methods are introduced. Secondly, we discuss publicly available WSI datasets and evaluation metrics for segmentation, classification, and detection tasks. Then, the latest development of machine learning in WSI segmentation, classification, and detection are reviewed continuously. Finally, the existing methods are studied, the applicabilities of the analysis methods are analyzed, and the application prospects of the analysis methods in this field are forecasted.


Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies on Medical Image Classification

arXiv.org Machine Learning

Deep AUC Maximization (DAM) is a paradigm for learning a deep neural network by maximizing the AUC score of the model on a dataset. Most previous works of AUC maximization focus on the perspective of optimization by designing efficient stochastic algorithms, and studies on generalization performance of DAM on difficult tasks are missing. In this work, we aim to make DAM more practical for interesting real-world applications (e.g., medical image classification). First, we propose a new margin-based surrogate loss function for the AUC score (named as the AUC margin loss). It is more robust than the commonly used AUC square loss, while enjoying the same advantage in terms of large-scale stochastic optimization. Second, we conduct empirical studies of our DAM method on difficult medical image classification tasks, namely classification of chest x-ray images for identifying many threatening diseases and classification of images of skin lesions for identifying melanoma. Our DAM method has achieved great success on these difficult tasks, i.e., the 1st place on Stanford CheXpert competition (by the paper submission date) and Top 1% rank (rank 33 out of 3314 teams) on Kaggle 2020 Melanoma classification competition. We also conduct extensive ablation studies to demonstrate the advantages of the new AUC margin loss over the AUC square loss on benchmark datasets. To the best of our knowledge, this is the first work that makes DAM succeed on large-scale medical image datasets.


Cancer image classification based on DenseNet model

arXiv.org Machine Learning

Computer-aided diagnosis establishes methods for robust assessment of medical image-based examination. Image processing introduced a promising strategy to facilitate disease classification and detection while diminishing unnecessary expenses. In this paper, we propose a novel metastatic cancer image classification model based on DenseNet Block, which can effectively identify metastatic cancer in small image patches taken from larger digital pathology scans. We evaluate the proposed approach to the slightly modified version of the PatchCamelyon (PCam) benchmark dataset. The dataset is the slightly modified version of the PatchCamelyon (PCam) benchmark dataset provided by Kaggle competition, which packs the clinically-relevant task of metastasis detection into a straight-forward binary image classification task. The experiments indicated that our model outperformed other classical methods like Resnet34, Vgg19. Moreover, we also conducted data augmentation experiment and study the relationship between Batches processed and loss value during the training and validation process.