Goto

Collaborating Authors

Results


Self-Supervised Learning Advances Medical Image Classification

#artificialintelligence

Posted by Shekoofeh Azizi, AI Resident, Google Research In recent years, there has been increasing interest in applying deep learning to ...


Contrastive learning of global and local features for medical image segmentation with limited annotations

arXiv.org Machine Learning

A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark. The code is made public at https://github.com/krishnabits001/domain_specific_cl.


Concept Bottleneck Models

arXiv.org Machine Learning

We seek to learn models that we can interact with using high-level concepts: if the model did not think there was a bone spur in the x-ray, would it still predict severe arthritis? State-of-the-art models today do not typically support the manipulation of concepts like "the existence of bone spurs", as they are trained end-to-end to go directly from raw input (e.g., pixels) to output (e.g., arthritis severity). We revisit the classic idea of first predicting concepts that are provided at training time, and then using these concepts to predict the label. By construction, we can intervene on these concept bottleneck models by editing their predicted concept values and propagating these changes to the final prediction. On x-ray grading and bird identification, concept bottleneck models achieve competitive accuracy with standard end-to-end models, while enabling interpretation in terms of high-level clinical concepts ("bone spurs") or bird attributes ("wing color"). These models also allow for richer human-model interaction: accuracy improves significantly if we can correct model mistakes on concepts at test time.


Get More Out of Your Annotated Medical Images with Self-Supervised Learning

#artificialintelligence

Data scarcity is a perennial problem when applying deep learning (DL) to medical imaging. In vision tasks related to natural images, DL practitioners often have access to astoundingly large annotated data sets on which they can train. However, due to privacy concerns and the expense of creating them, access to large annotated data sets is rare in medical imaging. The natural follow-up question is: How can practitioners in the field of medical imaging best use DL given limited data? In this article, I'll discuss one approach to stretch the use of available data, called self-supervised learning.