Goto

Collaborating Authors

Knowledge Management


A decision support framework for prediction of avian influenza

#artificialintelligence

For years, avian influenza has influenced economies and human health around the world. The emergence and spread of avian influenza virus have been uncertain and sudden. The virus is likely to spread through several pathways such as poultry transportation and wild bird migration. The complicated and global spread of avian influenza calls for surveillance tools for timely and reliable prediction of disease events. These tools can increase situational awareness and lead to faster reaction to events. Here, we aimed to design and evaluate a decision support framework that aids decision makers by answering their questions regarding the future risk of events at various geographical scales. Risk patterns were driven from pre-built components and combined in a knowledge base. Subsequently, questions were answered by direct queries on the knowledge base or through a built-in algorithm. The evaluation of the system in detecting events resulted in average sensitivity and specificity of 69.70% and 85.50%, respectively. The presented framework here can support health care authorities by providing them with an opportunity for early control of emergency situations.


How Artificial Intelligence is Changing the eLearning Environment

#artificialintelligence

Artificial intelligence (AI) is everywhere these days, making inanimate objects increasingly smart. It's designed by humans for humans, to enrich and facilitate our everyday lives. As a matter of fact, AI is now the brain behind your smartphone, car, music streaming service, banking app, freezer, and travel agency. If the main keyword for AI is "smart", then how come we don't talk more about this burgeoning technology in the context of knowledge, learning, and education? AI has everything we need to revolutionize the industry, enrich and facilitate the learning experience of students and adult learners, and boost the knowledge retention rates across the board.


Proof That A Knowledge Repository Is Exactly What You Are Looking For - WebSystemer.no

#artificialintelligence

Learn how we augment human performance by tapping into the collective and employing Artificial Intelligence to work alongside you.Continue reading on Medium » Source


Developing a Knowledge Engineering Capability in the TRW Defense Systems Group

AI Magazine

The TRW Defense Systems Group develops large man-machine networks that solve problems for government agencies. Until a few years ago these networks were either tightly-coupled humans loosely supported by machines -- like our ballistic missile system engineering organization, which provides technical advice to the Air Force, or tightly-coupled machines loosely controlled by humans- like the ground station for the NASA Tracking and Data Relay Satellite System. Because we have been producing first-of- a kind systems like these since the early 1950s, we consider ourselves leaders in the social art of assembling effective teams of diverse experts, and in the engineering art of conceiving and developing networks of interacting machines. But in the mid-1970s we began building systems in which humans and machines must be tightly coupled to each other-systems like the Sensor Data Fusion Center. Then we found that our well-worked system development techniques did not completely apply, and that our system engineering handbook needed a new chapter on communication between people and machines.


Thinking Backward for Knowledge Acquisition

AI Magazine

This article examines the direction in which knowledge bases are constructed for diagnosis and decision making. When building an expert system, it is traditional to elicit knowledge from an expert in the direction in which the knowledge is to be applied, namely, from observable evidence toward unobservable hypotheses. However, experts usually find it simpler to reason in the opposite direction-from hypotheses to unobservable evidence-because this direction reflects causal relationships. Therefore, we argue that a knowledge base be constructed following the expert's natural reasoning direction, and then reverse the direction for use. This choice of representation direction facilitates knowledge acquisition in deterministic domains and is essential when a problem involves uncertainty.


Knowledge-Based System Applications in Engineering Design: Research at MIT

AI Magazine

Advances in computer hardware and software and engineering methodologies in the 1960s and 1970s led to an increased use of computers by engineers. In design, this use has been limited almost exclusively to algorithmic solutions such as finite-element methods and circuit simulators. However, a number of problems encountered in design are not amenable to purely algorithmic solutions. These problems are often ill structured (the term ill-structured problems is used here to denote problems that do not have a clearly defined algorithmic solution), and an experienced engineer deals with them using judgment and experience. AI techniques, in particular the knowledge-based system (KBS) technology, offer a methodology to solve these ill-structured design problems. In this article, we describe several research projects that utilize KBS techniques for design automation.


Critiquing Human Judgment Using Knowledge-Acquisition Systems

AI Magazine

Automated knowledge-acquisition systems have focused on embedding a cognitive model of a key knowledge worker in their software that allows the system to acquire a knowledge base by interviewing domain experts just as the knowledge worker would. Two sets of research questions arise: (1) What theories, strategies, and approaches will let the modeling process be facilitated; accelerated; and, possibly, automated? If automated knowledge-acquisition systems reduce the bottleneck associated with acquiring knowledge bases, how can the bottleneck of building the automated knowledge-acquisition system itself be broken? That is, humans are known to be subject to errors and cognitive biases in their judgment processes. How can an automated system critique and influence such biases in a positive fashion, what common patterns exist across applications, and can models of influencing behavior be described and standardized?


Knowledge-Based Avoidance of Drug-Resistant HIV Mutants

AI Magazine

We describe an AI system (CTSHIV) that connects the scientific AIDS literature describing specific human immunodeficiency virus (HIV) drug resistances directly to the customized treatment strategy of a specific HIV patient. Rules in the CTSHIV knowledge base encode knowledge about sequence mutations in the HIV genome that have been found to result in drug resistance to the HIV virus. Rules are applied to the actual HIV sequences of the virus strains infecting the specific patient undergoing clinical treatment to infer current drug resistance. A rule-directed search through mutation sequence space identifies nearby drug-resistant mutant strains that might arise. The possible combination drug-treatment regimens currently approved by the U.S. Food and Drug Administration are considered and ranked by their estimated ability to avoid identified current and nearby drug-resistant mutants.


Integrating Digital Pens in Breast Imaging for Instant Knowledge Acquisition

AI Magazine

Future radiology practices assume that the radiology reports should be uniform, comprehensive, and easily managed. This means that reports must be readable to humans and machines alike. In order to improve reporting practices in breast imaging, we allow the radiologist to write structured reports with a special pen on paper with an invisible dot pattern. In this way, we provide a knowledge acquisition system for printed mammography patient forms for the combined work with printed and digital documents. In this domain, printed documents cannot be easily replaced by computer systems because they contain free-form sketches and textual annotations, and the acceptance of traditional PC reporting tools is rather low among the doctors.


SharePoint Syntex to automate content categorization and build a foundation for knowledge curation

ZDNet

Microsoft announced the general availability of Microsoft SharePoint Syntex as of Oc. 1, 2020. This is the first packaged product to come out of the code-name Project Cortex initiative first announced in November 2019. Project Cortex reflects Microsoft's ongoing investment in intelligent content services and graph APIs to proactively explore and categorize digital assets from Microsoft 365 and other connected sources. Teams need tools to help them collaborate and stay productive while remotely working. SharePoint Syntex will be available to M365 customers with E3 or E5 licenses for a small per-user uplift.