Goto

Collaborating Authors

Results


Accelerating Entrepreneurial Decision-Making Through Hybrid Intelligence

arXiv.org Artificial Intelligence

AI - Artificial Intelligence AGI - Artificial General Intelligence ANN - Artificial Neural Network ANOVA - Analysis of Variance ANT - Actor Network Theory API - Application Programming Interface APX - Amsterdam Power Exchange AVE - Average Variance Extracted BU - Business Unit CART - Classification and Regression Tree CBMV - Crowd-based Business Model Validation CR - Composite Reliability CT - Computed Tomography CVC - Corporate Venture Capital DR - Design Requirement DP - Design Principle DSR - Design Science Research DSS - Decision Support System EEX - European Energy Exchange FsQCA - Fuzzy-Set Qualitative Comparative Analysis GUI - Graphical User Interface HI-DSS - Hybrid Intelligence Decision Support System HIT - Human Intelligence Task IoT - Internet of Things IS - Information System IT - Information Technology MCC - Matthews Correlation Coefficient ML - Machine Learning OCT - Opportunity Creation Theory OGEMA 2.0 - Open Gateway Energy Management 2.0 OS - Operating System R&D - Research & Development RE - Renewable Energies RQ - Research Question SVM - Support Vector Machine SSD - Solid-State Drive SDK - Software Development Kit TCP/IP - Transmission Control Protocol/Internet Protocol TCT - Transaction Cost Theory UI - User Interface VaR - Value at Risk VC - Venture Capital VPP - Virtual Power Plant Chapter I


Explaining Outcomes of Multi-Party Dialogues using Causal Learning

arXiv.org Artificial Intelligence

Multi-party dialogues are common in enterprise social media on technical as well as non-technical topics. The outcome of a conversation may be positive or negative. It is important to analyze why a dialogue ends with a particular sentiment from the point of view of conflict analysis as well as future collaboration design. We propose an explainable time series mining algorithm for such analysis. A dialogue is represented as an attributed time series of occurrences of keywords, EMPATH categories, and inferred sentiments at various points in its progress. A special decision tree, with decision metrics that take into account temporal relationships between dialogue events, is used for predicting the cause of the outcome sentiment. Interpretable rules mined from the classifier are used to explain the prediction. Experimental results are presented for the enterprise social media posts in a large company.


Revisiting Citizen Science Through the Lens of Hybrid Intelligence

arXiv.org Artificial Intelligence

Artificial Intelligence (AI) can augment and sometimes even replace human cognition. Inspired by efforts to value human agency alongside productivity, we discuss the benefits of solving Citizen Science (CS) tasks with Hybrid Intelligence (HI), a synergetic mixture of human and artificial intelligence. Currently there is no clear framework or methodology on how to create such an effective mixture. Due to the unique participant-centered set of values and the abundance of tasks drawing upon both human common sense and complex 21st century skills, we believe that the field of CS offers an invaluable testbed for the development of HI and human-centered AI of the 21st century, while benefiting CS as well. In order to investigate this potential, we first relate CS to adjacent computational disciplines. Then, we demonstrate that CS projects can be grouped according to their potential for HI-enhancement by examining two key dimensions: the level of digitization and the amount of knowledge or experience required for participation. Finally, we propose a framework for types of human-AI interaction in CS based on established criteria of HI. This "HI lens" provides the CS community with an overview of several ways to utilize the combination of AI and human intelligence in their projects. It also allows the AI community to gain ideas on how developing AI in CS projects can further their own field.


CaSiNo: A Corpus of Campsite Negotiation Dialogues for Automatic Negotiation Systems

arXiv.org Artificial Intelligence

Automated systems that negotiate with humans have broad applications in pedagogy and conversational AI. To advance the development of practical negotiation systems, we present CaSiNo: a novel corpus of over a thousand negotiation dialogues in English. Participants take the role of campsite neighbors and negotiate for food, water, and firewood packages for their upcoming trip. Our design results in diverse and linguistically rich negotiations while maintaining a tractable, closed-domain environment. Inspired by the literature in human-human negotiations, we annotate persuasion strategies and perform correlation analysis to understand how the dialogue behaviors are associated with the negotiation performance. We further propose and evaluate a multi-task framework to recognize these strategies in a given utterance. We find that multi-task learning substantially improves the performance for all strategy labels, especially for the ones that are the most skewed. We release the dataset, annotations, and the code to propel future work in human-machine negotiations: https://github.com/kushalchawla/CaSiNo


A multiagent based framework secured with layered SVM-based IDS for remote healthcare systems

arXiv.org Artificial Intelligence

Since the number of elderly and patients who are in hospitals and healthcare centers are growing, providing efficient remote healthcare services seems very important. Currently, most such systems benefit from the distribution and autonomy features of multiagent systems and the structure of wireless sensor networks. On the one hand, securing the data of remote healthcare systems is one of the most significant concerns; particularly recent types of research about the security of remote healthcare systems keep them secure from eavesdropping and data modification. On the other hand, existing remote healthcare systems are still vulnerable against other common attacks of healthcare networks such as Denial of Service (DoS) and User to Root (U2R) attacks, because they are managed remotely and based on the Internet. Therefore, in this paper, we propose a secure framework for remote healthcare systems that consists of two phases. First, we design a healthcare system base on multiagent technology to collect data from a sensor network. Then, in the second phase, a layered architecture of intrusion detection systems that uses Support Vector Machine to learn the behavior of network traffic is applied. Based on our framework, we implement a secure remote healthcare system and evaluate this system against the frequent attacks of healthcare networks such as Smurf, Buffer overflow, Neptune, and Pod attacks. In the end, evaluation parameters of the layered architecture of intrusion detection systems prove the efficiency and correctness of our proposed framework.


From partners to populations: A hierarchical Bayesian account of coordination and convention

arXiv.org Artificial Intelligence

Languages are powerful solutions to coordination problems: they provide stable, shared expectations about how the words we say correspond to the beliefs and intentions in our heads. Yet language use in a variable and non-stationary social environment requires linguistic representations to be flexible: old words acquire new ad hoc or partner-specific meanings on the fly. In this paper, we introduce a hierarchical Bayesian theory of convention formation that aims to reconcile the long-standing tension between these two basic observations. More specifically, we argue that the central computational problem of communication is not simply transmission, as in classical formulations, but learning and adaptation over multiple timescales. Under our account, rapid learning within dyadic interactions allows for coordination on partner-specific common ground, while social conventions are stable priors that have been abstracted away from interactions with multiple partners. We present new empirical data alongside simulations showing how our model provides a cognitive foundation for explaining several phenomena that have posed a challenge for previous accounts: (1) the convergence to more efficient referring expressions across repeated interaction with the same partner, (2) the gradual transfer of partner-specific common ground to novel partners, and (3) the influence of communicative context on which conventions eventually form.


Systemic formalisation of Cyber-Physical-Social System (CPSS): A systematic literature review

arXiv.org Artificial Intelligence

The notion of Cyber-Physical-Social System (CPSS) is an emerging concept developed as a result of the need to understand the impact of Cyber-Physical Systems (CPS) on humans and vice versa. This paradigm shift from CPS to CPSS was mainly attributed to the increasing use of sensor-enabled smart devices and the tight link with the users. The concept of CPSS has been around for over a decade and it has gained increasing attention over the past few years. The evolution to incorporate human aspects in the CPS research has unlocked a number of research challenges. Particularly human dynamics brings additional complexity that is yet to be explored. The exploration to conceptualise the notion of CPSS has been partially addressed in few scientific literatures. Although its conceptualisation has always been use-case dependent. Thus, there is a lack of generic view as most works focus on specific domains. Furthermore, the systemic core and design principles linking it with the theory of systems are loose. This work aims at addressing these issues by first exploring and analysing scientific literature to understand the complete spectrum of CPSS through a Systematic Literature Review (SLR). Thereby identifying the state-of-the-art perspectives on CPSS regarding definitions, underlining principles and application areas. Subsequently, based on the findings of the SLR, we propose a domain-independent definition and a meta-model for CPSS, grounded in the Theory of Systems. Finally, a discussion on feasible future research directions is presented based on the systemic notion and the proposed meta-models.


An active inference model of collective intelligence

arXiv.org Artificial Intelligence

To date, formal models of collective intelligence have lacked a plausible mathematical description of the relationship between local-scale interactions between highly autonomous sub-system components (individuals) and global-scale behavior of the composite system (the collective). In this paper we use the Active Inference Formulation (AIF), a framework for explaining the behavior of any non-equilibrium steady state system at any scale, to posit a minimal agent-based model that simulates the relationship between local individual-level interaction and collective intelligence (operationalized as system-level performance). We explore the effects of providing baseline AIF agents (Model 1) with specific cognitive capabilities: Theory of Mind (Model 2); Goal Alignment (Model 3), and Theory of Mind with Goal Alignment (Model 4). These stepwise transitions in sophistication of cognitive ability are motivated by the types of advancements plausibly required for an AIF agent to persist and flourish in an environment populated by other AIF agents, and have also recently been shown to map naturally to canonical steps in human cognitive ability. Illustrative results show that stepwise cognitive transitions increase system performance by providing complementary mechanisms for alignment between agents' local and global optima. Alignment emerges endogenously from the dynamics of interacting AIF agents themselves, rather than being imposed exogenously by incentives to agents' behaviors (contra existing computational models of collective intelligence) or top-down priors for collective behavior (contra existing multiscale simulations of AIF). These results shed light on the types of generic information-theoretic patterns conducive to collective intelligence in human and other complex adaptive systems.


AI Can Now Debate with Humans and Sometimes Convince Them, Too

#artificialintelligence

Today on the Science Talk podcast, Noam Slonim of IBM Research speaks to Scientific American about an impressive feat of computer engineering: an AI-powered autonomous system that can engage in complex debate with humans over issues ranging from subsidizing preschool and the merit of space exploration to the pros and cons of genetic engineering. In a new Nature paper, Slonim and his colleagues show that across 80 debate topics, Project Debater's computational argument technology has performed very decently--with a human audience being the judge of that. "However, it is still somewhat inferior on average to the results obtained by expert human debaters," Slonim says. In a 2019 San Francisco showcase, the system went head-to-head with expert debater Harish Natarajan. Beyond gaming, it's rare to see humans and machines go against each other, let alone in an oratory competition.


A Survey of Hybrid Human-Artificial Intelligence for Social Computing

arXiv.org Artificial Intelligence

Along with the development of modern computing technology and social sciences, both theoretical research and practical applications of social computing have been continuously extended. In particular with the boom of artificial intelligence (AI), social computing is significantly influenced by AI. However, the conventional technologies of AI have drawbacks in dealing with more complicated and dynamic problems. Such deficiency can be rectified by hybrid human-artificial intelligence (H-AI) which integrates both human intelligence and AI into one unity, forming a new enhanced intelligence. H-AI in dealing with social problems shows the advantages that AI can not surpass. This paper firstly introduces the concept of H-AI. AI is the intelligence in the transition stage of H-AI, so the latest research progresses of AI in social computing are reviewed. Secondly, it summarizes typical challenges faced by AI in social computing, and makes it possible to introduce H-AI to solve these challenges. Finally, the paper proposes a holistic framework of social computing combining with H-AI, which consists of four layers: object layer, base layer, analysis layer, and application layer. It represents H-AI has significant advantages over AI in solving social problems.