Goto

Collaborating Authors

Results


Three opportunities of Digital Transformation: AI, IoT and Blockchain

#artificialintelligence

Koomey's law This law posits that the energy efficiency of computation doubles roughly every one-and-a-half years (see Figure 1–7). In other words, the energy necessary for the same amount of computation halves in that time span. To visualize the exponential impact this has, consider the face that a fully charged MacBook Air, when applying the energy efficiency of computation of 1992, would completely drain its battery in a mere 1.5 seconds. According to Koomey's law, the energy requirements for computation in embedded devices is shrinking to the point that harvesting the required energy from ambient sources like solar power and thermal energy should suffice to power the computation necessary in many applications. Metcalfe's law This law has nothing to do with chips, but all to do with connectivity. Formulated by Robert Metcalfe as he invented Ethernet, the law essentially states that the value of a network increases exponentially with regard to the number of its nodes (see Figure 1–8).


SoundWatch

Communications of the ACM

We present SoundWatch, a smartwatch-based deep learning application to sense, classify, and provide feedback about sounds occurring in the environment.


ACM's 2022 General Election

Communications of the ACM

The ACM constitution provides that our Association hold a general election in the even-numbered years for the positions of President, Vice President, Secretary/Treasurer, and Members-at-Large. Biographical information and statements of the candidates appear on the following pages (candidates' names appear in random order). In addition to the election of ACM's officers--President, Vice President, Secretary/Treasurer--two Members-at-Large will be elected to serve on ACM Council. The 2022 candidates for ACM President, Yannis Ioannidis and Joseph A. Konstan, are working together to solicit and answer questions from the computing community! Please refer to the instructions posted at https://vote.escvote.com/acm. Please note the election email will be addressed from acmhelp@mg.electionservicescorp.com. Please return your ballot in the enclosed envelope, which must be signed by you on the outside in the space provided. The signed ballot envelope may be inserted into a separate envelope for mailing if you prefer this method. All ballots must be received by no later than 16:00 UTC on 23 May 2022. Validation by the Elections Committee will take place at 14:00 UTC on 25 May 2022. Yannis Ioannidis is Professor of Informatics & Telecom at the U. of Athens, Greece (since 1997). Prior to that, he was a professor of Computer Sciences at the U. of Wisconsin-Madison (1986-1997).


A Newton-type algorithm for federated learning based on incremental Hessian eigenvector sharing

arXiv.org Artificial Intelligence

There is a growing interest in the decentralized optimization framework that goes under the name of Federated Learning (FL). In particular, much attention is being turned to FL scenarios where the network is strongly heterogeneous in terms of communication resources (e.g., bandwidth) and data distribution. In these cases, communication between local machines (agents) and the central server (Master) is a main consideration. In this work, we present an original communication-constrained Newton-type (NT) algorithm designed to accelerate FL in such heterogeneous scenarios. The algorithm is by design robust to non i.i.d. data distributions, handles heterogeneity of agents' communication resources (CRs), only requires sporadic Hessian computations, and achieves super-linear convergence. This is possible thanks to an incremental strategy, based on a singular value decomposition (SVD) of the local Hessian matrices, which exploits (possibly) outdated second-order information. The proposed solution is thoroughly validated on real datasets by assessing (i) the number of communication rounds required for convergence, (ii) the overall amount of data transmitted and (iii) the number of local Hessian computations required. For all these metrics, the proposed approach shows superior performance against state-of-the art techniques like GIANT and FedNL.


Stop Oversampling for Class Imbalance Learning: A Critical Review

arXiv.org Artificial Intelligence

For the last two decades, oversampling has been employed to overcome the challenge of learning from imbalanced datasets. Many approaches to solving this challenge have been offered in the literature. Oversampling, on the other hand, is a concern. That is, models trained on fictitious data may fail spectacularly when put to real-world problems. The fundamental difficulty with oversampling approaches is that, given a real-life population, the synthesized samples may not truly belong to the minority class. As a result, training a classifier on these samples while pretending they represent minority may result in incorrect predictions when the model is used in the real world. We analyzed a large number of oversampling methods in this paper and devised a new oversampling evaluation system based on hiding a number of majority examples and comparing them to those generated by the oversampling process. Based on our evaluation system, we ranked all these methods based on their incorrectly generated examples for comparison. Our experiments using more than 70 oversampling methods and three imbalanced real-world datasets reveal that all oversampling methods studied generate minority samples that are most likely to be majority. Given data and methods in hand, we argue that oversampling in its current forms and methodologies is unreliable for learning from class imbalanced data and should be avoided in real-world applications.


Technology Ethics in Action: Critical and Interdisciplinary Perspectives

arXiv.org Artificial Intelligence

This special issue interrogates the meaning and impacts of "tech ethics": the embedding of ethics into digital technology research, development, use, and governance. In response to concerns about the social harms associated with digital technologies, many individuals and institutions have articulated the need for a greater emphasis on ethics in digital technology. Yet as more groups embrace the concept of ethics, critical discourses have emerged questioning whose ethics are being centered, whether "ethics" is the appropriate frame for improving technology, and what it means to develop "ethical" technology in practice. This interdisciplinary issue takes up these questions, interrogating the relationships among ethics, technology, and society in action. This special issue engages with the normative and contested notions of ethics itself, how ethics has been integrated with technology across domains, and potential paths forward to support more just and egalitarian technology. Rather than starting from philosophical theories, the authors in this issue orient their articles around the real-world discourses and impacts of tech ethics--i.e., tech ethics in action.


Fair ranking: a critical review, challenges, and future directions

arXiv.org Artificial Intelligence

Ranking, recommendation, and retrieval systems are widely used in online platforms and other societal systems, including e-commerce, media-streaming, admissions, gig platforms, and hiring. In the recent past, a large "fair ranking" research literature has been developed around making these systems fair to the individuals, providers, or content that are being ranked. Most of this literature defines fairness for a single instance of retrieval, or as a simple additive notion for multiple instances of retrievals over time. This work provides a critical overview of this literature, detailing the often context-specific concerns that such an approach misses: the gap between high ranking placements and true provider utility, spillovers and compounding effects over time, induced strategic incentives, and the effect of statistical uncertainty. We then provide a path forward for a more holistic and impact-oriented fair ranking research agenda, including methodological lessons from other fields and the role of the broader stakeholder community in overcoming data bottlenecks and designing effective regulatory environments.


Pimloc grabs $7.5M for its AI-for-privacy video tools – TechCrunch

#artificialintelligence

Pimloc, a UK computer vision startup that's sharpened its business pitch to sell an AI service for quickly anonymizing video -- automating the blurring of faces or licence plates, along with a suite of other visual search services -- has grabbed another chunk of seed funding: Announcing a raise of $7.5M, led by Zetta Venture Partners, with participation from existing investors Amadeus Capital Partners and Speedinvest. The startup raised a $1.8M seed, back in October 2020, but says the new funds will be used to scale the business across Europe and the U.S., tracking the spread of data legislation and the evolution of public opinion around the privacy risks of biometrics -- pointing, for example, to the privacy backlash around Clearview AI. As well as building out its sales, marketing and R&D teams, Pimloc says the funding will be used to expand its product roadmap with a focus on video privacy and compliance. The business need it's targeting focuses on growing use of visual AI in industries like retail, warehousing and industrial factory settings -- for use cases like safety and efficiency. However the rise of AI-powered workplace surveillance tools create privacy risks for workers which could create legal and reputational risks for companies that deploy remote biometrics.


Towards Multi-Objective Statistically Fair Federated Learning

arXiv.org Artificial Intelligence

Federated Learning (FL) has emerged as a result of data ownership and privacy concerns to prevent data from being shared between multiple parties included in a training procedure. Although issues, such as privacy, have gained significant attention in this domain, not much attention has been given to satisfying statistical fairness measures in the FL setting. With this goal in mind, we conduct studies to show that FL is able to satisfy different fairness metrics under different data regimes consisting of different types of clients. More specifically, uncooperative or adversarial clients might contaminate the global FL model by injecting biased or poisoned models due to existing biases in their training datasets. Those biases might be a result of imbalanced training set (Zhang and Zhou 2019), historical biases (Mehrabi et al. 2021a), or poisoned data-points from data poisoning attacks against fairness (Mehrabi et al. 2021b; Solans, Biggio, and Castillo 2020). Thus, we propose a new FL framework that is able to satisfy multiple objectives including various statistical fairness metrics. Through experimentation, we then show the effectiveness of this method comparing it with various baselines, its ability in satisfying different objectives collectively and individually, and its ability in identifying uncooperative or adversarial clients and down-weighing their effect


External Stability Auditing to Test the Validity of Personality Prediction in AI Hiring

arXiv.org Artificial Intelligence

Automated hiring systems are among the fastest-developing of all high-stakes AI systems. Among these are algorithmic personality tests that use insights from psychometric testing, and promise to surface personality traits indicative of future success based on job seekers' resumes or social media profiles. We interrogate the validity of such systems using stability of the outputs they produce, noting that reliability is a necessary, but not a sufficient, condition for validity. Our approach is to (a) develop a methodology for an external audit of stability of predictions made by algorithmic personality tests, and (b) instantiate this methodology in an audit of two systems, Humantic AI and Crystal. Crucially, rather than challenging or affirming the assumptions made in psychometric testing -- that personality is a meaningful and measurable construct, and that personality traits are indicative of future success on the job -- we frame our methodology around testing the underlying assumptions made by the vendors of the algorithmic personality tests themselves. In our audit of Humantic AI and Crystal, we find that both systems show substantial instability with respect to key facets of measurement, and so cannot be considered valid testing instruments. For example, Crystal frequently computes different personality scores if the same resume is given in PDF vs. in raw text format, violating the assumption that the output of an algorithmic personality test is stable across job-irrelevant variations in the input. Among other notable findings is evidence of persistent -- and often incorrect -- data linkage by Humantic AI.