Goto

Collaborating Authors

Results


Emotion Recognition With Deep Learning On Google Colab

#artificialintelligence

There are some predefined packages and libraries in python as part of Computer Vision which can make our life quite simple and OpenCV is one of them. It helps us develop a system that can process images and real-time video using computer vision. OpenCV (Open Source Computer Vision Library) is an open-source computer vision and machine learning software library which is easy to import in Python. We will be using HaarCascade algorithm in the model. It is a machine learning-based approach where a cascade function is trained using a whole lot of positive and negative images. It is then used to detect objects in other images.


Leveraging background augmentations to encourage semantic focus in self-supervised contrastive learning

arXiv.org Artificial Intelligence

Unsupervised representation learning is an important challenge in computer vision, with self-supervised learning methods recently closing the gap to supervised representation learning. An important ingredient in high-performing self-supervised methods is the use of data augmentation by training models to place different augmented views of the same image nearby in embedding space. However, commonly used augmentation pipelines treat images holistically, disregarding the semantic relevance of parts of an image--e.g. a subject vs. a background--which can lead to the learning of spurious correlations. Our work addresses this problem by investigating a class of simple, yet highly effective "background augmentations", which encourage models to focus on semantically-relevant content by discouraging them from focusing on image backgrounds. Background augmentations lead to substantial improvements ( 1-2% on ImageNet-1k) in performance across a spectrum of state-of-the art self-supervised methods (MoCov2, BYOL, SwAV) on a variety of tasks, allowing us to reach within 0.3% of supervised performance. We also demonstrate that background augmentations improve robustness to a number of out of distribution settings, including natural adversarial examples, the backgrounds challenge, adversarial attacks, and ReaL ImageNet.


Revisiting Self-Supervised Monocular Depth Estimation

arXiv.org Artificial Intelligence

Self-supervised learning of depth map prediction and motion estimation from monocular video sequences is of vital importance -- since it realizes a broad range of tasks in robotics and autonomous vehicles. A large number of research efforts have enhanced the performance by tackling illumination variation, occlusions, and dynamic objects, to name a few. However, each of those efforts targets individual goals and endures as separate works. Moreover, most of previous works have adopted the same CNN architecture, not reaping architectural benefits. Therefore, the need to investigate the inter-dependency of the previous methods and the effect of architectural factors remains. To achieve these objectives, we revisit numerous previously proposed self-supervised methods for joint learning of depth and motion, perform a comprehensive empirical study, and unveil multiple crucial insights. Furthermore, we remarkably enhance the performance as a result of our study -- outperforming previous state-of-the-art performance.


Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

arXiv.org Artificial Intelligence

Supervised learning based object detection frameworks demand plenty of laborious manual annotations, which may not be practical in real applications. Semi-supervised object detection (SSOD) can effectively leverage unlabeled data to improve the model performance, which is of great significance for the application of object detection models. In this paper, we revisit SSOD and propose Instant-Teaching, a completely end-to-end and effective SSOD framework, which uses instant pseudo labeling with extended weak-strong data augmentations for teaching during each training iteration. To alleviate the confirmation bias problem and improve the quality of pseudo annotations, we further propose a co-rectify scheme based on Instant-Teaching, denoted as Instant-Teaching$^*$. Extensive experiments on both MS-COCO and PASCAL VOC datasets substantiate the superiority of our framework. Specifically, our method surpasses state-of-the-art methods by 4.2 mAP on MS-COCO when using $2\%$ labeled data. Even with full supervised information of MS-COCO, the proposed method still outperforms state-of-the-art methods by about 1.0 mAP. On PASCAL VOC, we can achieve more than 5 mAP improvement by applying VOC07 as labeled data and VOC12 as unlabeled data.


Unsupervised Feature Learning for Manipulation with Contrastive Domain Randomization

arXiv.org Artificial Intelligence

Robotic tasks such as manipulation with visual inputs require image features that capture the physical properties of the scene, e.g., the position and configuration of objects. Recently, it has been suggested to learn such features in an unsupervised manner from simulated, self-supervised, robot interaction; the idea being that high-level physical properties are well captured by modern physical simulators, and their representation from visual inputs may transfer well to the real world. In particular, learning methods based on noise contrastive estimation have shown promising results. To robustify the simulation-to-real transfer, domain randomization (DR) was suggested for learning features that are invariant to irrelevant visual properties such as textures or lighting. In this work, however, we show that a naive application of DR to unsupervised learning based on contrastive estimation does not promote invariance, as the loss function maximizes mutual information between the features and both the relevant and irrelevant visual properties. We propose a simple modification of the contrastive loss to fix this, exploiting the fact that we can control the simulated randomization of visual properties. Our approach learns physical features that are significantly more robust to visual domain variation, as we demonstrate using both rigid and non-rigid objects.


Efficient Spatialtemporal Context Modeling for Action Recognition

arXiv.org Artificial Intelligence

Contextual information plays an important role in action recognition. Local operations have difficulty to model the relation between two elements with a long-distance interval. However, directly modeling the contextual information between any two points brings huge cost in computation and memory, especially for action recognition, where there is an additional temporal dimension. Inspired from 2D criss-cross attention used in segmentation task, we propose a recurrent 3D criss-cross attention (RCCA-3D) module to model the dense long-range spatiotemporal contextual information in video for action recognition. The global context is factorized into sparse relation maps. We model the relationship between points in the same line along the direction of horizon, vertical and depth at each time, which forms a 3D criss-cross structure, and duplicate the same operation with recurrent mechanism to transmit the relation between points in a line to a plane finally to the whole spatiotemporal space. Compared with the non-local method, the proposed RCCA-3D module reduces the number of parameters and FLOPs by 25% and 11% for video context modeling. We evaluate the performance of RCCA-3D with two latest action recognition networks on three datasets and make a thorough analysis of the architecture, obtaining the best way to factorize and fuse the relation maps. Comparisons with other state-of-the-art methods demonstrate the effectiveness and efficiency of our model.


Computational Emotion Analysis From Images: Recent Advances and Future Directions

arXiv.org Artificial Intelligence

Understanding the information contained in the increasing repository of data is of vital importance to behavior sciences [34], which aim to predict human decision making and enable wide applications, such as mental health evaluation [14], business recommendation [33], opinion mining [54], and entertainment assistance [78]. Analyzing media data on an affective (emotional) level belongs to affective computing, which is defined as "the computing that relates to, arises from, or influences emotions" [38]. The importance of emotions has been emphasized for decades since Minsky introduced the relationship between intelligence and emotion [31]. One famous claim is "The question is not whether intelligent machines can have any emotions, but whether machines can be intelligent without emotions." Based on the types of media data, the research on affective computing can be classified into different categories, such as text [13, 72], image [75], speech [45], music [64], facial expression [24], video [56, 79], physiological signals [2], and multi-modal data [52, 41, 80]. The adage "a picture is worth a thousand words" indicates that images can convey rich semantics.


Improving Image co-segmentation via Deep Metric Learning

arXiv.org Artificial Intelligence

Deep Metric Learning (DML) is helpful in computer vision tasks. In this paper, we firstly introduce DML into image co-segmentation. We propose a novel Triplet loss for Image Segmentation, called IS-Triplet loss for short, and combine it with traditional image segmentation loss. Different from the general DML task which learns the metric between pictures, we treat each pixel as a sample, and use their embedded features in high-dimensional space to form triples, then we tend to force the distance between pixels of different categories greater than of the same category by optimizing IS-Triplet loss so that the pixels from different categories are easier to be distinguished in the high-dimensional feature space. We further present an efficient triple sampling strategy to make a feasible computation of IS-Triplet loss. Finally, the IS-Triplet loss is combined with 3 traditional image segmentation losses to perform image segmentation. We apply the proposed approach to image co-segmentation and test it on the SBCoseg dataset and the Internet dataset. The experimental result shows that our approach can effectively improve the discrimination of pixels' categories in high-dimensional space and thus help traditional loss achieve better performance of image segmentation with fewer training epochs.


White Paper Machine Learning in Certified Systems

arXiv.org Artificial Intelligence

Machine Learning (ML) seems to be one of the most promising solution to automate partially or completely some of the complex tasks currently realized by humans, such as driving vehicles, recognizing voice, etc. It is also an opportunity to implement and embed new capabilities out of the reach of classical implementation techniques. However, ML techniques introduce new potential risks. Therefore, they have only been applied in systems where their benefits are considered worth the increase of risk. In practice, ML techniques raise multiple challenges that could prevent their use in systems submitted to certification constraints. But what are the actual challenges? Can they be overcome by selecting appropriate ML techniques, or by adopting new engineering or certification practices? These are some of the questions addressed by the ML Certification 3 Workgroup (WG) set-up by the Institut de Recherche Technologique Saint Exup\'ery de Toulouse (IRT), as part of the DEEL Project.


Recent Advances in Deep Learning Techniques for Face Recognition

arXiv.org Artificial Intelligence

In recent years, researchers have proposed many deep learning (DL) methods for various tasks, and particularly face recognition (FR) made an enormous leap using these techniques. Deep FR systems benefit from the hierarchical architecture of the DL methods to learn discriminative face representation. Therefore, DL techniques significantly improve state-of-the-art performance on FR systems and encourage diverse and efficient real-world applications. In this paper, we present a comprehensive analysis of various FR systems that leverage the different types of DL techniques, and for the study, we summarize 168 recent contributions from this area. We discuss the papers related to different algorithms, architectures, loss functions, activation functions, datasets, challenges, improvement ideas, current and future trends of DL-based FR systems. We provide a detailed discussion of various DL methods to understand the current state-of-the-art, and then we discuss various activation and loss functions for the methods. Additionally, we summarize different datasets used widely for FR tasks and discuss challenges related to illumination, expression, pose variations, and occlusion. Finally, we discuss improvement ideas, current and future trends of FR tasks.