Goto

Collaborating Authors

Results


Computer Vision: Python OCR & Object Detection Quick Starter

#artificialintelligence

Free Coupon Discount - Computer Vision: Python OCR & Object Detection Quick Starter Quick Starter for Optical Character Recognition, Image Recognition Object Detection and Object Recognition using Python Created by Abhilash Nelson Students also bought Deep Learning Prerequisites: Logistic Regression in Python Deep Learning: Convolutional Neural Networks in Python Deep Learning A-Z: Hands-On Artificial Neural Networks The Complete Self-Driving Car Course - Applied Deep Learning The Complete Neural Networks Bootcamp: Theory, Applications Preview this Udemy Course GET COUPON CODE Description Hi There! welcome to my new course'Optical Character Recognition and Object Recognition Quick Start with Python'. This is the third course from my Computer Vision series. Image Recognition, Object Detection, Object Recognition and also Optical Character Recognition are among the most used applications of Computer Vision. Using these techniques, the computer will be able to recognize and classify either the whole image, or multiple objects inside a single image predicting the class of the objects with the percentage accuracy score. Using OCR, it can also recognize and convert text in the images to machine readable format like text or a document.


Deep learning-enabled medical computer vision

#artificialintelligence

A decade of unprecedented progress in artificial intelligence (AI) has demonstrated the potential for many fields—including medicine—to benefit from the insights that AI techniques can extract from data. Here we survey recent progress in the development of modern computer vision techniques—powered by deep learning—for medical applications, focusing on medical imaging, medical video, and clinical deployment. We start by briefly summarizing a decade of progress in convolutional neural networks, including the vision tasks they enable, in the context of healthcare. Next, we discuss several example medical imaging applications that stand to benefit—including cardiology, pathology, dermatology, ophthalmology–and propose new avenues for continued work. We then expand into general medical video, highlighting ways in which clinical workflows can integrate computer vision to enhance care. Finally, we discuss the challenges and hurdles required for real-world clinical deployment of these technologies.


Classification with Localization: Convert any Keras Classifier to a Detector

#artificialintelligence

Image classification is used to solve several Computer Vision problems; right from medical diagnoses, to surveillance systems, on to monitoring agricultural farms. There are innumerable possibilities to explore using Image Classification. If you have completed the basic courses on Computer Vision, you are familiar with the tasks and routines involved in Image Classification tasks. Image Classification tasks follow a standard flow – where you pass an image to a deep learning model and it outcomes the class or the label of the object present. While learning Computer Vision, most often a project that would be equivalent to your first hello world project, will most likely be an image classifier. You attempt to solve something like the digit recognition on MNIST Digits dataset or maybe the Cats and Dog Classification problem.


'Deep Nostalgia': New online AI tool brings portraits of dead relatives to life, some call it 'spooky' - The Economic Times

#artificialintelligence

Like the animated paintings that adorn the walls of Harry Potter's school, a new online tool promises to bring portraits of dead relatives to life, stirring debate about the use of technology to impersonate people. Genealogy company MyHeritage launched its "Deep Nostalgia" feature earlier this week, allowing users to turn stills into short videos showing the person in the photograph smiling, winking and nodding. "Seeing our beloved ancestors' faces come to life ... lets us imagine how they might have been in reality, and provides a profound new way of connecting to our family history," MyHeritage founder Gilad Japhet said in a statement. Developed with Israeli computer vision firm D-ID, Deep Nostalgia uses deep learning algorithms to animate images with facial expressions that were based on those of MyHeritage employees. Some of the company's users took to Twitter on Friday to share the animated images of their deceased relatives, as well as moving depictions of historical figures, including Albert Einstein and Ancient Egypt's lost Queen Nefertiti.


Optical Character Recognition (OCR) for Text Localization, Detection, and More!

#artificialintelligence

If you have trouble reading this email, see it on a web browser. It has been a little while since we sent our last newsletter. In this edition, we are bringing you some exciting goodies we think you will love. To get started, this research paper on Liquid Time-constant Networks led by Ramin Hasani et al. from MIT showcases novel recurrent neural network models that can change their underlying equations to adapt to new data inputs to reduce complexity massively continuously. Have you tried out expert.ai's natural language API demo (no signup needed to try it!).


This is how we lost control of our faces

MIT Technology Review

Deborah Raji, a fellow at nonprofit Mozilla, and Genevieve Fried, who advises members of the US Congress on algorithmic accountability, examined over 130 facial-recognition data sets compiled over 43 years. They found that researchers, driven by the exploding data requirements of deep learning, gradually abandoned asking for people's consent. This has led more and more of people's personal photos to be incorporated into systems of surveillance without their knowledge. It has also led to far messier data sets: they may unintentionally include photos of minors, use racist and sexist labels, or have inconsistent quality and lighting. The trend could help explain the growing number of cases in which facial-recognition systems have failed with troubling consequences, such as the false arrests of two Black men in the Detroit area last year.


Computer Vision in Agriculture

#artificialintelligence

The era of technology and innovations is rapidly transforming our lives today. The potential of such technologies is extending beyond our imagination. The advent of advanced technologies such as computer vision is contributing enormously across industries. Among several industries, the agriculture industry is one such sector that has started incorporating computer vision in their mode of operations. Agriculture is considered the economy-boosting sector that makes every nation stand out in the global market.


LNSMM: Eye Gaze Estimation With Local Network Share Multiview Multitask

arXiv.org Artificial Intelligence

Eye gaze estimation has become increasingly significant in computer vision.In this paper,we systematically study the mainstream of eye gaze estimation methods,propose a novel methodology to estimate eye gaze points and eye gaze directions simultaneously.First,we construct a local sharing network for feature extraction of gaze points and gaze directions estimation,which can reduce network computational parameters and converge quickly;Second,we propose a Multiview Multitask Learning (MTL) framework,for gaze directions,a coplanar constraint is proposed for the left and right eyes,for gaze points,three views data input indirectly introduces eye position information,a cross-view pooling module is designed, propose joint loss which handle both gaze points and gaze directions estimation.Eventually,we collect a dataset to use of gaze points,which have three views to exist public dataset.The experiment show our method is state-of-the-art the current mainstream methods on two indicators of gaze points and gaze directions.


Knowledge Distillation Methods for Efficient Unsupervised Adaptation Across Multiple Domains

arXiv.org Artificial Intelligence

Beyond the complexity of CNNs that require training on large annotated datasets, the domain shift between design and operational data has limited the adoption of CNNs in many real-world applications. For instance, in person re-identification, videos are captured over a distributed set of cameras with non-overlapping viewpoints. The shift between the source (e.g. lab setting) and target (e.g. cameras) domains may lead to a significant decline in recognition accuracy. Additionally, state-of-the-art CNNs may not be suitable for such real-time applications given their computational requirements. Although several techniques have recently been proposed to address domain shift problems through unsupervised domain adaptation (UDA), or to accelerate/compress CNNs through knowledge distillation (KD), we seek to simultaneously adapt and compress CNNs to generalize well across multiple target domains. In this paper, we propose a progressive KD approach for unsupervised single-target DA (STDA) and multi-target DA (MTDA) of CNNs. Our method for KD-STDA adapts a CNN to a single target domain by distilling from a larger teacher CNN, trained on both target and source domain data in order to maintain its consistency with a common representation. Our proposed approach is compared against state-of-the-art methods for compression and STDA of CNNs on the Office31 and ImageClef-DA image classification datasets. It is also compared against state-of-the-art methods for MTDA on Digits, Office31, and OfficeHome. In both settings -- KD-STDA and KD-MTDA -- results indicate that our approach can achieve the highest level of accuracy across target domains, while requiring a comparable or lower CNN complexity.


Regional Attention Network (RAN) for Head Pose and Fine-grained Gesture Recognition

arXiv.org Artificial Intelligence

Affect is often expressed via non-verbal body language such as actions/gestures, which are vital indicators for human behaviors. Recent studies on recognition of fine-grained actions/gestures in monocular images have mainly focused on modeling spatial configuration of body parts representing body pose, human-objects interactions and variations in local appearance. The results show that this is a brittle approach since it relies on accurate body parts/objects detection. In this work, we argue that there exist local discriminative semantic regions, whose "informativeness" can be evaluated by the attention mechanism for inferring fine-grained gestures/actions. To this end, we propose a novel end-to-end \textbf{Regional Attention Network (RAN)}, which is a fully Convolutional Neural Network (CNN) to combine multiple contextual regions through attention mechanism, focusing on parts of the images that are most relevant to a given task. Our regions consist of one or more consecutive cells and are adapted from the strategies used in computing HOG (Histogram of Oriented Gradient) descriptor. The model is extensively evaluated on ten datasets belonging to 3 different scenarios: 1) head pose recognition, 2) drivers state recognition, and 3) human action and facial expression recognition. The proposed approach outperforms the state-of-the-art by a considerable margin in different metrics.