Goto

Collaborating Authors

Results


An AI-Controlled Drone Racer Has Beaten Human Pilots For The First Time

#artificialintelligence

Drone racing is an increasingly popular sport with big money prizes for skilled professionals. New control algorithms developed at the University of Zurich (UZH) have beaten experienced human pilots for the first time – but they still have significant limitations. In the past, attempts to develop automated algorithms to beat humans have run into problems with accurately simulating the limitations of the quadcopter and the flight path it takes. Traditional flight paths around a complex drone racing course are calculated using polynomial methods which produce a series of smooth curves, and these are not necessarily as fast as the sharper and more jagged paths flown by human pilots. A team from the Robotics and Perception Group at UZH has developed a trajectory planning algorithm to calculates the optimal route at every point in the flight, rather than doing it section by section.


New algorithm flies drones faster than human racing pilots

Robohub

To be useful, drones need to be quick. Because of their limited battery life they must complete whatever task they have – searching for survivors on a disaster site, inspecting a building, delivering cargo – in the shortest possible time. And they may have to do it by going through a series of waypoints like windows, rooms, or specific locations to inspect, adopting the best trajectory and the right acceleration or deceleration at each segment. The best human drone pilots are very good at doing this and have so far always outperformed autonomous systems in drone racing. Now, a research group at the University of Zurich (UZH) has created an algorithm that can find the quickest trajectory to guide a quadrotor – a drone with four propellers – through a series of waypoints on a circuit.


New Algorithm Flies Drones Faster than Human Racing Pilots - ELE Times

#artificialintelligence

To be useful, drones need to be quick. Because of their limited battery life, they must complete whatever task they have--searching for survivors on a disaster site, inspecting a building, delivering cargo--in the shortest possible time. And they may have to do it by going through a series of waypoints like windows, rooms, or specific locations to inspect, adopting the best trajectory and the right acceleration or deceleration at each segment. The best human drone pilots are very good at doing this and have so far always outperformed autonomous systems in drone racing. Now, a research group at the University of Zurich (UZH) has created an algorithm that can find the quickest trajectory to guide a quadrotor--a drone with four propellers--through a series of waypoints on a circuit.