Collaborating Authors


OntoSeer -- A Recommendation System to Improve the Quality of Ontologies Artificial Intelligence

Building an ontology is not only a time-consuming process, but it is also confusing, especially for beginners and the inexperienced. Although ontology developers can take the help of domain experts in building an ontology, they are not readily available in several cases for a variety of reasons. Ontology developers have to grapple with several questions related to the choice of classes, properties, and the axioms that should be included. Apart from this, there are aspects such as modularity and reusability that should be taken care of. From among the thousands of publicly available ontologies and vocabularies in repositories such as Linked Open Vocabularies (LOV) and BioPortal, it is hard to know the terms (classes and properties) that can be reused in the development of an ontology. A similar problem exists in implementing the right set of ontology design patterns (ODPs) from among the several available. Generally, ontology developers make use of their experience in handling these issues, and the inexperienced ones have a hard time. In order to bridge this gap, we propose a tool named OntoSeer, that monitors the ontology development process and provides suggestions in real-time to improve the quality of the ontology under development. It can provide suggestions on the naming conventions to follow, vocabulary to reuse, ODPs to implement, and axioms to be added to the ontology. OntoSeer has been implemented as a Prot\'eg\'e plug-in.

A Survey on Visual Transfer Learning using Knowledge Graphs Artificial Intelligence

Recent approaches of computer vision utilize deep learning methods as they perform quite well if training and testing domains follow the same underlying data distribution. However, it has been shown that minor variations in the images that occur when using these methods in the real world can lead to unpredictable errors. Transfer learning is the area of machine learning that tries to prevent these errors. Especially, approaches that augment image data using auxiliary knowledge encoded in language embeddings or knowledge graphs (KGs) have achieved promising results in recent years. This survey focuses on visual transfer learning approaches using KGs. KGs can represent auxiliary knowledge either in an underlying graph-structured schema or in a vector-based knowledge graph embedding. Intending to enable the reader to solve visual transfer learning problems with the help of specific KG-DL configurations we start with a description of relevant modeling structures of a KG of various expressions, such as directed labeled graphs, hypergraphs, and hyper-relational graphs. We explain the notion of feature extractor, while specifically referring to visual and semantic features. We provide a broad overview of knowledge graph embedding methods and describe several joint training objectives suitable to combine them with high dimensional visual embeddings. The main section introduces four different categories on how a KG can be combined with a DL pipeline: 1) Knowledge Graph as a Reviewer; 2) Knowledge Graph as a Trainee; 3) Knowledge Graph as a Trainer; and 4) Knowledge Graph as a Peer. To help researchers find evaluation benchmarks, we provide an overview of generic KGs and a set of image processing datasets and benchmarks including various types of auxiliary knowledge. Last, we summarize related surveys and give an outlook about challenges and open issues for future research.

Transforming UNL graphs in OWL representations Artificial Intelligence

Extracting formal knowledge (ontologies) from natural language is a challenge that can benefit from a (semi-) formal linguistic representation of texts, at the semantic level. We propose to achieve such a representation by implementing the Universal Networking Language (UNL) specifications on top of RDF. Thus, the meaning of a statement in any language will be soundly expressed as a RDF-UNL graph that constitutes a middle ground between natural language and formal knowledge. In particular, we show that RDF-UNL graphs can support content extraction using generic SHACL rules and that reasoning on the extracted facts allows detecting incoherence in the original texts. This approach is experimented in the UNseL project that aims at extracting ontological representations from system requirements/specifications in order to check that they are consistent, complete and unambiguous. Our RDF-UNL implementation and all code for the working examples of this paper are publicly available under the CeCILL-B license at

OWLOOP: A Modular API to Describe OWL Axioms in OOP Objects Hierarchies Artificial Intelligence

OWLOOP is an Application Programming Interface (API) for using the Ontology Web Language (OWL) by the means of Object-Oriented Programming (OOP). It is common to design software architectures using the OOP paradigm for increasing their modularity. If the components of an architecture also exploit OWL ontologies for knowledge representation and reasoning, they would require to be interfaced with OWL axioms. Since OWL does not adhere to the OOP paradigm, such an interface often leads to boilerplate code affecting modularity, and OWLOOP is designed to address this issue as well as the associated computational aspects. We present an extension of the OWL-API to provide a general-purpose interface between OWL axioms subject to reasoning and modular OOP objects hierarchies. This manuscript has been submitted to the SoftwareX Elsevier journal on the 12th of January 2021, revised on the 18th of November 2021, accepted on the 14th of December 2021, and published on the 30th of December 2021.

What is Event Knowledge Graph: A Survey Artificial Intelligence

Besides entity-centric knowledge, usually organized as Knowledge Graph (KG), events are also an essential kind of knowledge in the world, which trigger the spring up of event-centric knowledge representation form like Event KG (EKG). It plays an increasingly important role in many machine learning and artificial intelligence applications, such as intelligent search, question-answering, recommendation, and text generation. This paper provides a comprehensive survey of EKG from history, ontology, instance, and application views. Specifically, to characterize EKG thoroughly, we focus on its history, definitions, schema induction, acquisition, related representative graphs/systems, and applications. The development processes and trends are studied therein. We further summarize perspective directions to facilitate future research on EKG.

Low-resource Learning with Knowledge Graphs: A Comprehensive Survey Artificial Intelligence

Machine learning methods especially deep neural networks have achieved great success but many of them often rely on a number of labeled samples for training. In real-world applications, we often need to address sample shortage due to e.g., dynamic contexts with emerging prediction targets and costly sample annotation. Therefore, low-resource learning, which aims to learn robust prediction models with no enough resources (especially training samples), is now being widely investigated. Among all the low-resource learning studies, many prefer to utilize some auxiliary information in the form of Knowledge Graph (KG), which is becoming more and more popular for knowledge representation, to reduce the reliance on labeled samples. In this survey, we very comprehensively reviewed over $90$ papers about KG-aware research for two major low-resource learning settings -- zero-shot learning (ZSL) where new classes for prediction have never appeared in training, and few-shot learning (FSL) where new classes for prediction have only a small number of labeled samples that are available. We first introduced the KGs used in ZSL and FSL studies as well as the existing and potential KG construction solutions, and then systematically categorized and summarized KG-aware ZSL and FSL methods, dividing them into different paradigms such as the mapping-based, the data augmentation, the propagation-based and the optimization-based. We next presented different applications, including not only KG augmented tasks in Computer Vision and Natural Language Processing (e.g., image classification, text classification and knowledge extraction), but also tasks for KG curation (e.g., inductive KG completion), and some typical evaluation resources for each task. We eventually discussed some challenges and future directions on aspects such as new learning and reasoning paradigms, and the construction of high quality KGs.

An Ontological Knowledge Representation for Smart Agriculture Artificial Intelligence

In order to provide the agricultural industry with the infrastructure it needs to take advantage of advanced technology, such as big data, the cloud, and the internet of things (IoT); smart farming is a management concept that focuses on providing the infrastructure necessary to track, monitor, automate, and analyse operations. To represent the knowledge extracted from the primary data collected is of utmost importance. An agricultural ontology framework for smart agriculture systems is presented in this study. The knowledge graph is represented as a lattice to capture and perform reasoning on spatio-temporal agricultural data.

Survey on English Entity Linking on Wikidata Artificial Intelligence

Wikidata is a frequently updated, community-driven, and multilingual knowledge graph. Hence, Wikidata is an attractive basis for Entity Linking, which is evident by the recent increase in published papers. This survey focuses on four subjects: (1) Which Wikidata Entity Linking datasets exist, how widely used are they and how are they constructed? (2) Do the characteristics of Wikidata matter for the design of Entity Linking datasets and if so, how? (3) How do current Entity Linking approaches exploit the specific characteristics of Wikidata? (4) Which Wikidata characteristics are unexploited by existing Entity Linking approaches? This survey reveals that current Wikidata-specific Entity Linking datasets do not differ in their annotation scheme from schemes for other knowledge graphs like DBpedia. Thus, the potential for multilingual and time-dependent datasets, naturally suited for Wikidata, is not lifted. Furthermore, we show that most Entity Linking approaches use Wikidata in the same way as any other knowledge graph missing the chance to leverage Wikidata-specific characteristics to increase quality. Almost all approaches employ specific properties like labels and sometimes descriptions but ignore characteristics such as the hyper-relational structure. Hence, there is still room for improvement, for example, by including hyper-relational graph embeddings or type information. Many approaches also include information from Wikipedia, which is easily combinable with Wikidata and provides valuable textual information, which Wikidata lacks.

McLaren partners with AI specialist for performance optimization


McLaren Racing has announced a new partnership with AI cloud platform developer DataRobot, which offers a unified platform that reportedly allows organizations to unlock the full potential of AI. Under the partnership, DataRobot's AI cloud technology platform will be integrated into the McLaren Racing infrastructure, delivering AI-powered predictions and insights to maximize performance and optimize simulations. Zak Brown, CEO of McLaren Racing, commented, "DataRobot is a leader in its field, bringing its innovative technology and platform to top businesses around the globe. McLaren Racing continues to lead in innovation and technology, and partnerships with the likes of DataRobot allow us to progress, improve and support our team in our ongoing push for optimum performance. We are delighted to welcome DataRobot as they join our partner family for the Qatar Grand Prix this weekend."

Natural Language Processing in-and-for Design Research Artificial Intelligence

We review the scholarly contributions that utilise Natural Language Processing (NLP) methods to support the design process. Using a heuristic approach, we collected 223 articles published in 32 journals and within the period 1991-present. We present state-of-the-art NLP in-and-for design research by reviewing these articles according to the type of natural language text sources: internal reports, design concepts, discourse transcripts, technical publications, consumer opinions, and others. Upon summarizing and identifying the gaps in these contributions, we utilise an existing design innovation framework to identify the applications that are currently being supported by NLP. We then propose a few methodological and theoretical directions for future NLP in-and-for design research.