Goto

Collaborating Authors

Results


Analogy-Making as a Core Primitive in the Software Engineering Toolbox

arXiv.org Artificial Intelligence

An analogy is an identification of structural similarities and correspondences between two objects. Computational models of analogy making have been studied extensively in the field of cognitive science to better understand high-level human cognition. For instance, Melanie Mitchell and Douglas Hofstadter sought to better understand high-level perception by developing the Copycat algorithm for completing analogies between letter sequences. In this paper, we argue that analogy making should be seen as a core primitive in software engineering. We motivate this argument by showing how complex software engineering problems such as program understanding and source-code transformation learning can be reduced to an instance of the analogy-making problem. We demonstrate this idea using Sifter, a new analogy-making algorithm suitable for software engineering applications that adapts and extends ideas from Copycat. In particular, Sifter reduces analogy-making to searching for a sequence of update rule applications. Sifter uses a novel representation for mathematical structures capable of effectively representing the wide variety of information embedded in software. We conclude by listing major areas of future work for Sifter and analogy-making in software engineering.


sunny-as2: Enhancing SUNNY for Algorithm Selection

arXiv.org Artificial Intelligence

SUNNY is an Algorithm Selection (AS) technique originally tailored for Constraint Programming (CP). SUNNY enables to schedule, from a portfolio of solvers, a subset of solvers to be run on a given CP problem. This approach has proved to be effective for CP problems, and its parallel version won many gold medals in the Open category of the MiniZinc Challenge -- the yearly international competition for CP solvers. In 2015, the ASlib benchmarks were released for comparing AS systems coming from disparate fields (e.g., ASP, QBF, and SAT) and SUNNY was extended to deal with generic AS problems. This led to the development of sunny-as2, an algorithm selector based on SUNNY for ASlib scenarios. A preliminary version of sunny-as2 was submitted to the Open Algorithm Selection Challenge (OASC) in 2017, where it turned out to be the best approach for the runtime minimization of decision problems. In this work, we present the technical advancements of sunny-as2, including: (i) wrapper-based feature selection; (ii) a training approach combining feature selection and neighbourhood size configuration; (iii) the application of nested cross-validation. We show how sunny-as2 performance varies depending on the considered AS scenarios, and we discuss its strengths and weaknesses. Finally, we also show how sunny-as2 improves on its preliminary version submitted to OASC.


Learning Objective Boundaries for Constraint Optimization Problems

arXiv.org Artificial Intelligence

Constraint Optimization Problems (COP) are often considered without sufficient knowledge on the boundaries of the objective variable to optimize. When available, tight boundaries are helpful to prune the search space or estimate problem characteristics. Finding close boundaries, that correctly under- and overestimate the optimum, is almost impossible without actually solving the COP. This paper introduces Bion, a novel approach for boundary estimation by learning from previously solved instances of the COP. Based on supervised machine learning, Bion is problem-specific and solver-independent and can be applied to any COP which is repeatedly solved with different data inputs. An experimental evaluation over seven realistic COPs shows that an estimation model can be trained to prune the objective variables' domains by over 80%. By evaluating the estimated boundaries with various COP solvers, we find that Bion improves the solving process for some problems, although the effect of closer bounds is generally problem-dependent.


An Integer Linear Programming Framework for Mining Constraints from Data

arXiv.org Artificial Intelligence

Various structured output prediction problems (e.g., sequential tagging) involve constraints over the output space. By identifying these constraints, we can filter out infeasible solutions and build an accountable model. To this end, we present a general integer linear programming (ILP) framework for mining constraints from data. We model the inference of structured output prediction as an ILP problem. Then, given the coefficients of the objective function and the corresponding solution, we mine the underlying constraints by estimating the outer and inner polytopes of the feasible set. We verify the proposed constraint mining algorithm in various synthetic and real-world applications and demonstrate that the proposed approach successfully identifies the feasible set at scale. In particular, we show that our approach can learn to solve 9x9 Sudoku puzzles and minimal spanning tree problems from examples without providing the underlying rules. We also demonstrate results on hierarchical multi-label classification and conduct a theoretical analysis on how close the mined constraints are from the ground truth.


Symbolic Logic meets Machine Learning: A Brief Survey in Infinite Domains

arXiv.org Artificial Intelligence

The tension between deduction and induction is perhaps the most fundamental issue in areas such as philosophy, cognition and artificial intelligence (AI). The deduction camp concerns itself with questions about the expressiveness of formal languages for capturing knowledge about the world, together with proof systems for reasoning from such knowledge bases. The learning camp attempts to generalize from examples about partial descriptions about the world. In AI, historically, these camps have loosely divided the development of the field, but advances in cross-over areas such as statistical relational learning, neuro-symbolic systems, and high-level control have illustrated that the dichotomy is not very constructive, and perhaps even ill-formed. In this article, we survey work that provides further evidence for the connections between logic and learning. Our narrative is structured in terms of three strands: logic versus learning, machine learning for logic, and logic for machine learning, but naturally, there is considerable overlap. We place an emphasis on the following "sore" point: there is a common misconception that logic is for discrete properties, whereas probability theory and machine learning, more generally, is for continuous properties. We report on results that challenge this view on the limitations of logic, and expose the role that logic can play for learning in infinite domains.


From Demonstrations to Task-Space Specifications: Using Causal Analysis to Extract Rule Parameterization from Demonstrations

arXiv.org Artificial Intelligence

Learning models of user behaviour is an important problem that is broadly applicable across many application domains requiring human-robot interaction. In this work, we show that it is possible to learn generative models for distinct user behavioural types, extracted from human demonstrations, by enforcing clustering of preferred task solutions within the latent space. We use these models to differentiate between user types and to find cases with overlapping solutions. Moreover, we can alter an initially guessed solution to satisfy the preferences that constitute a particular user type by backpropagating through the learned differentiable models. An advantage of structuring generative models in this way is that we can extract causal relationships between symbols that might form part of the user's specification of the task, as manifested in the demonstrations. We further parameterize these specifications through constraint optimization in order to find a safety envelope under which motion planning can be performed. We show that the proposed method is capable of correctly distinguishing between three user types, who differ in degrees of cautiousness in their motion, while performing the task of moving objects with a kinesthetically driven robot in a tabletop environment. Our method successfully identifies the correct type, within the specified time, in 99% [97.8 - 99.8] of the cases, which outperforms an IRL baseline. We also show that our proposed method correctly changes a default trajectory to one satisfying a particular user specification even with unseen objects. The resulting trajectory is shown to be directly implementable on a PR2 humanoid robot completing the same task.


An Analysis of Regularized Approaches for Constrained Machine Learning

arXiv.org Artificial Intelligence

Regularization-based approaches for injecting constraints in Machine Learning (ML) were introduced (see e.g. Given the recent interest in ethical and trustworthy AI, however, several works are resorting to these approaches for enforcing desired properties over a ML model (e.g. The regularization function C denotes a vector of (nonnegative) constraint violation indices for m constraints, while λ 0 is a vector of weights (or multipliers). As an example, in a regression problem we may desire a specific output ordering for two input vectors in the training set. If n is even, the term is 0 for perfectly balanced classifications.


Graph Neural Networks Meet Neural-Symbolic Computing: A Survey and Perspective

arXiv.org Artificial Intelligence

Neural-symbolic computing has now become the subject of interest of both academic and industry research laboratories. Graph Neural Networks (GNN) have been widely used in relational and symbolic domains, with widespread application of GNNs in combinatorial optimization, constraint satisfaction, relational reasoning and other scientific domains. The need for improved explainability, interpretability and trust of AI systems in general demands principled methodologies, as suggested by neural-symbolic computing. In this paper, we review the state-of-the-art on the use of GNNs as a model of neural-symbolic computing. This includes the application of GNNs in several domains as well as its relationship to current developments in neural-symbolic computing.


Injecting Domain Knowledge in Neural Networks: a Controlled Experiment on a Constrained Problem

arXiv.org Artificial Intelligence

Given enough data, Deep Neural Networks (DNNs) are capable of learning complex input-output relations with high accuracy. In several domains, however, data is scarce or expensive to retrieve, while a substantial amount of expert knowledge is available. It seems reasonable that if we can inject this additional information in the DNN, we could ease the learning process. One such case is that of Constraint Problems, for which declarative approaches exists and pure ML solutions have obtained mixed success. Using a classical constrained problem as a case study, we perform controlled experiments to probe the impact of progressively adding domain and empirical knowledge in the DNN. Our results are very encouraging, showing that (at least in our setup) embedding domain knowledge at training time can have a considerable effect and that a small amount of empirical knowledge is sufficient to obtain practically useful results.


Teaching the Old Dog New Tricks: Supervised Learning with Constraints

arXiv.org Artificial Intelligence

Methods for taking into account external knowledge in Machine Learning models have the potential to address outstanding issues in data-driven AI methods, such as improving safety and fairness, and can simplify training in the presence of scarce data. We propose a simple, but effective, method for injecting constraints at training time in supervised learning, based on decomposition and bi-level optimization: a master step is in charge of enforcing the constraints, while a learner step takes care of training the model. The process leads to approximate constraint satisfaction. The method is applicable to any ML approach for which the concept of label (or target) is well defined (most regression and classification scenarios), and allows to reuse existing training algorithms with no modifications. We require no assumption on the constraints, although their properties affect the shape and complexity of the master problem. Convergence guarantees are hard to provide, but we found that the approach performs well on ML tasks with fairness constraints and on classical datasets with synthetic constraints.