Collaborating Authors


Towards Question Format Independent Numerical Reasoning: A Set of Prerequisite Tasks Artificial Intelligence

Numerical reasoning is often important to accurately understand the world. Recently, several format-specific datasets have been proposed, such as numerical reasoning in the settings of Natural Language Inference (NLI), Reading Comprehension (RC), and Question Answering (QA). Several format-specific models and architectures in response to those datasets have also been proposed. However, there exists a strong need for a benchmark which can evaluate the abilities of models, in performing question format independent numerical reasoning, as (i) the numerical reasoning capabilities we want to teach are not controlled by question formats, (ii) for numerical reasoning technology to have the best possible application, it must be able to process language and reason in a way that is not exclusive to a single format, task, dataset or domain. In pursuit of this goal, we introduce NUMBERGAME, a multifaceted benchmark to evaluate model performance across numerical reasoning tasks of eight diverse formats. We add four existing question types in our compilation. Two of the new types we add are about questions that require external numerical knowledge, commonsense knowledge and domain knowledge. For building a more practical numerical reasoning system, NUMBERGAME demands four capabilities beyond numerical reasoning: (i) detecting question format directly from data (ii) finding intermediate common format to which every format can be converted (iii) incorporating commonsense knowledge (iv) handling data imbalance across formats. We build several baselines, including a new model based on knowledge hunting using a cheatsheet. However, all baselines perform poorly in contrast to the human baselines, indicating the hardness of our benchmark. Our work takes forward the recent progress in generic system development, demonstrating the scope of these under-explored tasks.

INFOTABS: Inference on Tables as Semi-structured Data Artificial Intelligence

In this paper, we observe that semi-structured tabulated text is ubiquitous; understanding them requires not only comprehending the meaning of text fragments, but also implicit relationships between them. We argue that such data can prove as a testing ground for understanding how we reason about information. To study this, we introduce a new dataset called INFOTABS, comprising of human-written textual hypotheses based on premises that are tables extracted from Wikipedia info-boxes. Our analysis shows that the semi-structured, multi-domain and heterogeneous nature of the premises admits complex, multi-faceted reasoning. Experiments reveal that, while human annotators agree on the relationships between a table-hypothesis pair, several standard modeling strategies are unsuccessful at the task, suggesting that reasoning about tables can pose a difficult modeling challenge.

Natural Language QA Approaches using Reasoning with External Knowledge Artificial Intelligence

Question answering (QA) in natural language (NL) has been an important aspect of AI from its early days. Winograd's ``councilmen'' example in his 1972 paper and McCarthy's Mr. Hug example of 1976 highlights the role of external knowledge in NL understanding. While Machine Learning has been the go-to approach in NL processing as well as NL question answering (NLQA) for the last 30 years, recently there has been an increasingly emphasized thread on NLQA where external knowledge plays an important role. The challenges inspired by Winograd's councilmen example, and recent developments such as the Rebooting AI book, various NLQA datasets, research on knowledge acquisition in the NLQA context, and their use in various NLQA models have brought the issue of NLQA using ``reasoning'' with external knowledge to the forefront. In this paper, we present a survey of the recent work on them. We believe our survey will help establish a bridge between multiple fields of AI, especially between (a) the traditional fields of knowledge representation and reasoning and (b) the field of NL understanding and NLQA.

Joint Reasoning for Multi-Faceted Commonsense Knowledge Artificial Intelligence

Commonsense knowledge (CSK) supports a variety of AI applications, from visual understanding to chatbots. Prior works on acquiring CSK, such as ConceptNet, have compiled statements that associate concepts, like everyday objects or activities, with properties that hold for most or some instances of the concept. Each concept is treated in isolation from other concepts, and the only quantitative measure (or ranking) of properties is a confidence score that the statement is valid. This paper aims to overcome these limitations by introducing a multi-faceted model of CSK statements and methods for joint reasoning over sets of inter-related statements. Our model captures four different dimensions of CSK statements: plausibility, typicality, remarkability and salience, with scoring and ranking along each dimension. For example, hyenas drinking water is typical but not salient, whereas hyenas eating carcasses is salient. For reasoning and ranking, we develop a method with soft constraints, to couple the inference over concepts that are related in in a taxonomic hierarchy. The reasoning is cast into an integer linear programming (ILP), and we leverage the theory of reduction costs of a relaxed LP to compute informative rankings. This methodology is applied to several large CSK collections. Our evaluation shows that we can consolidate these inputs into much cleaner and more expressive knowledge. Results are available at

Evaluating Commonsense in Pre-trained Language Models Artificial Intelligence

Contextualized representations trained over large raw text data have given remarkable improvements for NLP tasks including question answering and reading comprehension. There have been works showing that syntactic, semantic and word sense knowledge are contained in such representations, which explains why they benefit such tasks. However, relatively little work has been done investigating commonsense knowledge contained in contextualized representations, which is crucial for human question answering and reading comprehension. We study the commonsense ability of GPT, BERT, XLNet, and RoBERTa by testing them on seven challenging benchmarks, finding that language modeling and its variants are effective objectives for promoting models' commonsense ability while bidirectional context and larger training set are bonuses. We additionally find that current models do poorly on tasks require more necessary inference steps. Finally, we test the robustness of models by making dual test cases, which are correlated so that the correct prediction of one sample should lead to correct prediction of the other. Interestingly, the models show confusion on these test cases, which suggests that they learn commonsense at the surface rather than the deep level. We release a test set, named CA Ts publicly, for future research. Introduction Contextualized representations trained over large-scale text data have given remarkable improvements to a wide range of NLP tasks, including natural language inference (Bowman et al. 2015), question answering (Rajpurkar, Jia, and Liang 2018) and reading comprehension (Lai et al. 2017). Giving new state-of-the-art results that approach or surpass human performance on several benchmark datasets, it is an interesting question what types of knowledge are learned in pre-trained contextualized representations in order to better understand how they benefit the NLP problems above. There has been work investigating the nature of syntactic (Liu et al. 2019a), semantic (Liu et al. 2019a) and word sense (Kim et al. 2019) knowledge contained in such contextualized representations, in particular BERT (Devlin et al. 2019), showing Work done while at Westlake University Copyright c null 2020, Association for the Advancement of Artificial Intelligence (

PIQA: Reasoning about Physical Commonsense in Natural Language Artificial Intelligence

To apply eyeshadow without a brush, should I use a cotton swab or a toothpick? Questions requiring this kind of physical commonsense pose a challenge to today's natural language understanding systems. While recent pretrained models (such as BERT) have made progress on question answering over more abstract domains - such as news articles and encyclopedia entries, where text is plentiful - in more physical domains, text is inherently limited due to reporting bias. Can AI systems learn to reliably answer physical common-sense questions without experiencing the physical world? In this paper, we introduce the task of physical commonsense reasoning and a corresponding benchmark dataset Physical Interaction: Question Answering or PIQA. Though humans find the dataset easy (95% accuracy), large pretrained models struggle (77%). We provide analysis about the dimensions of knowledge that existing models lack, which offers significant opportunities for future research.

CommonGen: A Constrained Text Generation Dataset Towards Generative Commonsense Reasoning Artificial Intelligence

Rational humans can generate sentences that cover a certain set of concepts while describing natural and common scenes. For example, given {apple(noun), tree(noun), pick(verb)}, humans can easily come up with scenes like "a boy is picking an apple from a tree" via their generative commonsense reasoning ability. However, we find this capacity has not been well learned by machines. Most prior works in machine commonsense focus on discriminative reasoning tasks with a multi-choice question answering setting. Herein, we present CommonGen: a challenging dataset for testing generative commonsense reasoning with a constrained text generation task. We collect 37k concept-sets as inputs and 90k human-written sentences as associated outputs. Additionally, we also provide high-quality rationales behind the reasoning process for the development and test sets from the human annotators. We demonstrate the difficulty of the task by examining a wide range of sequence generation methods with both automatic metrics and human evaluation. The state-of-the-art pre-trained generation model, UniLM, is still far from human performance in this task. Our data and code is publicly available at .

Better Language Models and Their Implications


We've trained a large-scale unsupervised language model which generates coherent paragraphs of text, achieves state-of-the-art performance on many language modeling benchmarks, and performs rudimentary reading comprehension, machine translation, question answering, and summarization--all without task-specific training. Our model, called GPT-2 (a successor to GPT), was trained simply to predict the next word in 40GB of Internet text. Due to our concerns about malicious applications of the technology, we are not releasing the trained model. As an experiment in responsible disclosure, we are instead releasing a much smaller model for researchers to experiment with, as well as a technical paper. GPT-2 is a large transformer-based language model with 1.5 billion parameters, trained on a dataset[1] of 8 million web pages. GPT-2 is trained with a simple objective: predict the next word, given all of the previous words within some text. The diversity of the dataset causes this simple goal to contain naturally occurring demonstrations of many tasks across diverse domains. GPT-2 is a direct scale-up of GPT, with more than 10X the parameters and trained on more than 10X the amount of data. GPT-2 displays a broad set of capabilities, including the ability to generate conditional synthetic text samples of unprecedented quality, where we prime the model with an input and have it generate a lengthy continuation. In addition, GPT-2 outperforms other language models trained on specific domains (like Wikipedia, news, or books) without needing to use these domain-specific training datasets. On language tasks like question answering, reading comprehension, summarization, and translation, GPT-2 begins to learn these tasks from the raw text, using no task-specific training data.

Teaching Pretrained Models with Commonsense Reasoning: A Preliminary KB-Based Approach Artificial Intelligence

Recently, pretrained language models (e.g., BERT) have achieved great success on many downstream natural language understanding tasks and exhibit a certain level of commonsense reasoning ability. However, their performance on commonsense tasks is still far from that of humans. As a preliminary attempt, we propose a simple yet effective method to teach pretrained models with commonsense reasoning by leveraging the structured knowledge in ConceptNet, the largest commonsense knowledge base (KB). Specifically, the structured knowledge in KB allows us to construct various logical forms, and then generate multiple-choice questions requiring commonsense logical reasoning. Experimental results demonstrate that, when refined on these training examples, the pretrained models consistently improve their performance on tasks that require commonsense reasoning, especially in the few-shot learning setting. Besides, we also perform analysis to understand which logical relations are more relevant to commonsense reasoning.

Event Representation Learning Enhanced with External Commonsense Knowledge Artificial Intelligence

Event Representation Learning Enhanced with External Commonsense Knowledge Xiao Ding, Kuo Liao, Ting Liu, Zhongyang Li, Junwen Duan Research Center for Social Computing and Information Retrieval Harbin Institute of Technology, China {xding, kliao, tliu, zyli, jwduan } Abstract Prior work has proposed effective methods to learn event representations that can capture syntactic and semantic information over text corpus, demonstrating their effectiveness for downstream tasks such as script event prediction. On the other hand, events extracted from raw texts lacks of commonsense knowledge, such as the intents and emotions of the event participants, which are useful for distinguishing event pairs when there are only subtle differences in their surface realizations. To address this issue, this paper proposes to leverage external commonsense knowledge about the intent and sentiment of the event. Experiments on three event-related tasks, i.e., event similarity, script event prediction and stock market prediction, show that our model obtains much better event embeddings for the tasks, achieving 78% improvements on hard similarity task, yielding more precise inferences on subsequent events under given contexts, and better accuracies in predicting the volatilities of the stock market 1 . 1 Introduction Events are a kind of important objective information of the world. Structuralizing and representing such information as machine-readable knowledge are crucial to artificial intelligence (Li et al., 2018b, 2019). The main idea is to learn distributed representations for structured events (i.e. Figure 1: Intent and sentiment enhanced event embed-dings can distinguish distinct events even with high lexical overlap, and find similar events even with low lexical overlap.