Collaborating Authors


Continual Lifelong Learning in Natural Language Processing: A Survey Artificial Intelligence

Continual learning (CL) aims to enable information systems to learn from a continuous data stream across time. However, it is difficult for existing deep learning architectures to learn a new task without largely forgetting previously acquired knowledge. Furthermore, CL is particularly challenging for language learning, as natural language is ambiguous: it is discrete, compositional, and its meaning is context-dependent. In this work, we look at the problem of CL through the lens of various NLP tasks. Our survey discusses major challenges in CL and current methods applied in neural network models. We also provide a critical review of the existing CL evaluation methods and datasets in NLP.

Approches quantitatives de l'analyse des pr{\'e}dictions en traduction automatique neuronale (TAN) Artificial Intelligence

As part of a larger project on optimal learning conditions in neural machine translation, we investigate characteristic training phases of translation engines. All our experiments are carried out using OpenNMT-Py: the pre-processing step is implemented using the Europarl training corpus and the INTERSECT corpus is used for validation. Longitudinal analyses of training phases suggest that the progression of translations is not always linear. Following the results of textometric explorations, we identify the importance of the phenomena related to chronological progression, in order to map different processes at work in neural machine translation (NMT).

Towards Coinductive Models for Natural Language Understanding. Bringing together Deep Learning and Deep Semantics Artificial Intelligence

This article contains a proposal to add coinduction to the computational apparatus of natural language understanding. This, we argue, will provide a basis for more realistic, computationally sound, and scalable models of natural language dialogue, syntax and semantics. Given that the bottom up, inductively constructed, semantic and syntactic structures are brittle, and seemingly incapable of adequately representing the meaning of longer sentences or realistic dialogues, natural language understanding is in need of a new foundation. Coinduction, which uses top down constraints, has been successfully used in the design of operating systems and programming languages. Moreover, implicitly it has been present in text mining, machine translation, and in some attempts to model intensionality and modalities, which provides evidence that it works. This article shows high level formalizations of some of such uses. Since coinduction and induction can coexist, they can provide a common language and a conceptual model for research in natural language understanding. In particular, such an opportunity seems to be emerging in research on compositionality. This article shows several examples of the joint appearance of induction and coinduction in natural language processing. We argue that the known individual limitations of induction and coinduction can be overcome in empirical settings by a combination of the the two methods. We see an open problem in providing a theory of their joint use.

Reciprocal Supervised Learning Improves Neural Machine Translation Artificial Intelligence

Despite the recent success on image classification, self-training has only achieved limited gains on structured prediction tasks such as neural machine translation (NMT). This is mainly due to the compositionality of the target space, where the far-away prediction hypotheses lead to the notorious reinforced mistake problem. In this paper, we revisit the utilization of multiple diverse models and present a simple yet effective approach named Reciprocal-Supervised Learning (RSL). RSL first exploits individual models to generate pseudo parallel data, and then cooperatively trains each model on the combined synthetic corpus. RSL leverages the fact that different parameterized models have different inductive biases, and better predictions can be made by jointly exploiting the agreement among each other. Unlike the previous knowledge distillation methods built upon a much stronger teacher, RSL is capable of boosting the accuracy of one model by introducing other comparable or even weaker models. RSL can also be viewed as a more efficient alternative to ensemble. Extensive experiments demonstrate the superior performance of RSL on several benchmarks with significant margins.

Model Compression via Pruning


To obtain fast and accurate inference on edge devices, a model has to be optimized for real-time inference. Fine-tuned state-of-the-art models like VGG16/19, ResNet50 have 138 million and 23 million parameters respectively and inference is often expensive on resource-constrained devices. Previously I've talked about one model compression technique called "Knowledge Distillation" using a smaller student network to mimic the performance of a larger teacher network (Both student and teacher network has different network architecture). Today, the focus will be on "Pruning" one model compression technique that allows us to compress the model to a smaller size with zero or marginal loss of accuracy. In short, pruning eliminates the weights with low magnitude (That does not contribute much to the final model performance).

Deep Dive in Datasets for Machine translation in NLP Using TensorFlow and PyTorch


With the advancement of machine translation, there is a recent movement towards large-scale empirical techniques that have prompted exceptionally massive enhancements in translation quality. Machine Translation is the technique of consequently changing over one characteristic language into another, saving the importance of the info text. The ongoing research on Image description presents a considerable challenge in the field of natural language processing and computer vision. To overcome this issue, multimodal machine translation presents data from other methods, for the most part, static pictures, to improve the interpretation quality. Here, we will cover the absolute most well-known datasets that are utilized in machine translation.

Neuro-Symbolic Representations for Video Captioning: A Case for Leveraging Inductive Biases for Vision and Language Artificial Intelligence

Neuro-symbolic representations have proved effective in learning structure information in vision and language. In this paper, we propose a new model architecture for learning multi-modal neuro-symbolic representations for video captioning. Our approach uses a dictionary learning-based method of learning relations between videos and their paired text descriptions. We refer to these relations as relative roles and leverage them to make each token role-aware using attention. This results in a more structured and interpretable architecture that incorporates modality-specific inductive biases for the captioning task. Intuitively, the model is able to learn spatial, temporal, and cross-modal relations in a given pair of video and text. The disentanglement achieved by our proposal gives the model more capacity to capture multi-modal structures which result in captions with higher quality for videos. Our experiments on two established video captioning datasets verifies the effectiveness of the proposed approach based on automatic metrics. We further conduct a human evaluation to measure the grounding and relevance of the generated captions and observe consistent improvement for the proposed model. The codes and trained models can be found at

Empowering Things with Intelligence: A Survey of the Progress, Challenges, and Opportunities in Artificial Intelligence of Things Artificial Intelligence

In the Internet of Things (IoT) era, billions of sensors and devices collect and process data from the environment, transmit them to cloud centers, and receive feedback via the internet for connectivity and perception. However, transmitting massive amounts of heterogeneous data, perceiving complex environments from these data, and then making smart decisions in a timely manner are difficult. Artificial intelligence (AI), especially deep learning, is now a proven success in various areas including computer vision, speech recognition, and natural language processing. AI introduced into the IoT heralds the era of artificial intelligence of things (AIoT). This paper presents a comprehensive survey on AIoT to show how AI can empower the IoT to make it faster, smarter, greener, and safer. Specifically, we briefly present the AIoT architecture in the context of cloud computing, fog computing, and edge computing. Then, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving. Next, we summarize some promising applications of AIoT that are likely to profoundly reshape our world. Finally, we highlight the challenges facing AIoT and some potential research opportunities.

DORB: Dynamically Optimizing Multiple Rewards with Bandits Artificial Intelligence

Policy gradients-based reinforcement learning has proven to be a promising approach for directly optimizing non-differentiable evaluation metrics for language generation tasks. However, optimizing for a specific metric reward leads to improvements in mostly that metric only, suggesting that the model is gaming the formulation of that metric in a particular way without often achieving real qualitative improvements. Hence, it is more beneficial to make the model optimize multiple diverse metric rewards jointly. While appealing, this is challenging because one needs to manually decide the importance and scaling weights of these metric rewards. Further, it is important to consider using a dynamic combination and curriculum of metric rewards that flexibly changes over time. Considering the above aspects, in our work, we automate the optimization of multiple metric rewards simultaneously via a multi-armed bandit approach (DORB), where at each round, the bandit chooses which metric reward to optimize next, based on expected arm gains. We use the Exp3 algorithm for bandits and formulate two approaches for bandit rewards: (1) Single Multi-reward Bandit (SM-Bandit); (2) Hierarchical Multi-reward Bandit (HM-Bandit). We empirically show the effectiveness of our approaches via various automatic metrics and human evaluation on two important NLG tasks: question generation and data-to-text generation, including on an unseen-test transfer setup. Finally, we present interpretable analyses of the learned bandit curriculum over the optimized rewards.



This repo contains PyTorch implementation of the original transformer paper ( Vaswani et al.). It's aimed at making it easy to start playing and learning about transformers. Important note: I'll be adding a jupyter notebook soon as well! Transformers were originally proposed by Vaswani et al. in a seminal paper called Attention Is All You Need. You probably heard of transformers one way or another. GPT-3 and BERT to name a few well known ones .