Collaborating Authors


A Review of Bangla Natural Language Processing Tasks and the Utility of Transformer Models Artificial Intelligence

Bangla -- ranked as the 6th most widely spoken language across the world (, with 230 million native speakers -- is still considered as a low-resource language in the natural language processing (NLP) community. With three decades of research, Bangla NLP (BNLP) is still lagging behind mainly due to the scarcity of resources and the challenges that come with it. There is sparse work in different areas of BNLP; however, a thorough survey reporting previous work and recent advances is yet to be done. In this study, we first provide a review of Bangla NLP tasks, resources, and tools available to the research community; we benchmark datasets collected from various platforms for nine NLP tasks using current state-of-the-art algorithms (i.e., transformer-based models). We provide comparative results for the studied NLP tasks by comparing monolingual vs. multilingual models of varying sizes. We report our results using both individual and consolidated datasets and provide data splits for future research. We reviewed a total of 108 papers and conducted 175 sets of experiments. Our results show promising performance using transformer-based models while highlighting the trade-off with computational costs. We hope that such a comprehensive survey will motivate the community to build on and further advance the research on Bangla NLP.

Artificial Intelligence, speech and language processing approaches to monitoring Alzheimer's Disease: a systematic review Artificial Intelligence

Language is a valuable source of clinical information in Alzheimer's Disease, as it declines concurrently with neurodegeneration. Consequently, speech and language data have been extensively studied in connection with its diagnosis. This paper summarises current findings on the use of artificial intelligence, speech and language processing to predict cognitive decline in the context of Alzheimer's Disease, detailing current research procedures, highlighting their limitations and suggesting strategies to address them. We conducted a systematic review of original research between 2000 and 2019, registered in PROSPERO (reference CRD42018116606). An interdisciplinary search covered six databases on engineering (ACM and IEEE), psychology (PsycINFO), medicine (PubMed and Embase) and Web of Science. Bibliographies of relevant papers were screened until December 2019. From 3,654 search results 51 articles were selected against the eligibility criteria. Four tables summarise their findings: study details (aim, population, interventions, comparisons, methods and outcomes), data details (size, type, modalities, annotation, balance, availability and language of study), methodology (pre-processing, feature generation, machine learning, evaluation and results) and clinical applicability (research implications, clinical potential, risk of bias and strengths/limitations). While promising results are reported across nearly all 51 studies, very few have been implemented in clinical research or practice. We concluded that the main limitations of the field are poor standardisation, limited comparability of results, and a degree of disconnect between study aims and clinical applications. Attempts to close these gaps should support translation of future research into clinical practice.

Building A User-Centric and Content-Driven Socialbot Artificial Intelligence

To build Sounding Board, we develop a system architecture that is capable of accommodating dialog strategies that we designed for socialbot conversations. The architecture consists of a multi-dimensional language understanding module for analyzing user utterances, a hierarchical dialog management framework for dialog context tracking and complex dialog control, and a language generation process that realizes the response plan and makes adjustments for speech synthesis. Additionally, we construct a new knowledge base to power the socialbot by collecting social chat content from a variety of sources. An important contribution of the system is the synergy between the knowledge base and the dialog management, i.e., the use of a graph structure to organize the knowledge base that makes dialog control very efficient in bringing related content to the discussion. Using the data collected from Sounding Board during the competition, we carry out in-depth analyses of socialbot conversations and user ratings which provide valuable insights in evaluation methods for socialbots. We additionally investigate a new approach for system evaluation and diagnosis that allows scoring individual dialog segments in the conversation. Finally, observing that socialbots suffer from the issue of shallow conversations about topics associated with unstructured data, we study the problem of enabling extended socialbot conversations grounded on a document. To bring together machine reading and dialog control techniques, a graph-based document representation is proposed, together with methods for automatically constructing the graph. Using the graph-based representation, dialog control can be carried out by retrieving nodes or moving along edges in the graph. To illustrate the usage, a mixed-initiative dialog strategy is designed for socialbot conversations on news articles.

A Survey of Code-switched Speech and Language Processing Machine Learning

Code-switching, the alternation of languages within a conversation or utterance, is a common communicative phenomenon that occurs in multilingual communities across the world. This survey reviews computational approaches for code-switched Speech and Natural Language Processing. We motivate why processing code-switched text and speech is essential for building intelligent agents and systems that interact with users in multilingual communities. As code-switching data and resources are scarce, we list what is available in various code-switched language pairs with the language processing tasks they can be used for. We review code-switching research in various Speech and NLP applications, including language processing tools and end-to-end systems. We conclude with future directions and open problems in the field.

Parsing Coordination for Spoken Language Understanding Machine Learning

ABSTRACT Typical spoken language understanding systems provide narrow semantic parses using a domain-specific ontology. The parses contain intents and slots that are directly consumed by downstream domain applications. In this work we discuss expanding such systems to handle compound entities and intents by introducing a domain-agnostic shallow parser that handles linguistic coordination. We show that our model for parsing coordination learns domain-independent and slot-independent features and is able to segment conjunct boundaries of many different phrasal categories. We also show that using adversarial training can be effective for improving generalization across different slot types for coordination parsing. Index Terms-- spoken language understanding, chunking, coordination 1. INTRODUCTION A typical spoken language understanding (SLU) system maps user utterances to domain-specific semantic representations that can be factored into an intent and slots [1, 2]. For example, an utterance, "what is the weather like in boston" has one intent WeatherInfo and one slot type CityName whose value is "boston." Thus, parsing for such systems is often factored into two separate tasks: intent classification and entity recognition whose results are consumed by downstream domain applications.

Cognitive Science in the era of Artificial Intelligence: A roadmap for reverse-engineering the infant language-learner Artificial Intelligence

During their first years of life, infants learn the language(s) of their environment at an amazing speed despite large cross cultural variations in amount and complexity of the available language input. Understanding this simple fact still escapes current cognitive and linguistic theories. Recently, spectacular progress in the engineering science, notably, machine learning and wearable technology, offer the promise of revolutionizing the study of cognitive development. Machine learning offers powerful learning algorithms that can achieve human-like performance on many linguistic tasks. Wearable sensors can capture vast amounts of data, which enable the reconstruction of the sensory experience of infants in their natural environment. The project of 'reverse engineering' language development, i.e., of building an effective system that mimics infant's achievements appears therefore to be within reach. Here, we analyze the conditions under which such a project can contribute to our scientific understanding of early language development. We argue that instead of defining a sub-problem or simplifying the data, computational models should address the full complexity of the learning situation, and take as input the raw sensory signals available to infants. This implies that (1) accessible but privacy-preserving repositories of home data be setup and widely shared, and (2) models be evaluated at different linguistic levels through a benchmark of psycholinguist tests that can be passed by machines and humans alike, (3) linguistically and psychologically plausible learning architectures be scaled up to real data using probabilistic/optimization principles from machine learning. We discuss the feasibility of this approach and present preliminary results.

Multi-Task Learning For Parsing The Alexa Meaning Representation Language

AAAI Conferences

The Alexa Meaning Representation Language (AMRL) is a compositional graph-based semantic representation that includes fine-grained types, properties, actions, and roles and can represent a wide variety of spoken language.  AMRL increases the ability of virtual assistants to represent more complex requests, including logical and conditional statements as well as ones with nested clauses. Due to this representational capacity, the acquisition of large scale data resources is challenging, which limits the accuracy of resulting models. This paper has two primary contributions. First, we develop a linearization of AMRL graphs along with a deep multi-task model that predicts fine-grained types, properties, and intents. Second, we show how to jointly train a model that predicts an existing representation for spoken language understanding (SLU) along with the linearized AMRL parse. The resulting model, which leverages learned embeddings from both tasks, is able to predict the AMRL representation more accurately than other approaches, decreasing the error rates in the full parse by 3.56% absolute and reducing the amount of natively annotated data needed to train accurate parsing models.