Goto

Collaborating Authors

Results


Hyperbolic Disk Embeddings for Directed Acyclic Graphs

arXiv.org Machine Learning

Obtaining continuous representations of structural data such as directed acyclic graphs (DAGs) has gained attention in machine learning and artificial intelligence. However, embedding complex DAGs in which both ancestors and descendants of nodes are exponentially increasing is difficult. Tackling in this problem, we develop Disk Embeddings, which is a framework for embedding DAGs into quasi-metric spaces. Existing state-of-the-art methods, Order Embeddings and Hyperbolic Entailment Cones, are instances of Disk Embedding in Euclidean space and spheres respectively. Furthermore, we propose a novel method Hyperbolic Disk Embeddings to handle exponential growth of relations. The results of our experiments show that our Disk Embedding models outperform existing methods especially in complex DAGs other than trees.


From Frequency to Meaning: Vector Space Models of Semantics

Journal of Artificial Intelligence Research

Computers understand very little of the meaning of human language. This profoundly limits our ability to give instructions to computers, the ability of computers to explain their actions to us, and the ability of computers to analyse and process text. Vector space models (VSMs) of semantics are beginning to address these limits. This paper surveys the use of VSMs for semantic processing of text. We organize the literature on VSMs according to the structure of the matrix in a VSM. There are currently three broad classes of VSMs, based on term-document, word-context, and pair-pattern matrices, yielding three classes of applications. We survey a broad range of applications in these three categories and we take a detailed look at a specific open source project in each category. Our goal in this survey is to show the breadth of applications of VSMs for semantics, to provide a new perspective on VSMs for those who are already familiar with the area, and to provide pointers into the literature for those who are less familiar with the field.