Goto

Collaborating Authors

Results


GPT-3 Creative Fiction

#artificialintelligence

What if I told a story here, how would that story start?" Thus, the summarization prompt: "My second grader asked me what this passage means: …" When a given prompt isn't working and GPT-3 keeps pivoting into other modes of completion, that may mean that one hasn't constrained it enough by imitating a correct output, and one needs to go further; writing the first few words or sentence of the target output may be necessary.


Explainable Artificial Intelligence: a Systematic Review

arXiv.org Artificial Intelligence

This has led to the development of a plethora of domain-dependent and context-specific methods for dealing with the interpretation of machine learning (ML) models and the formation of explanations for humans. Unfortunately, this trend is far from being over, with an abundance of knowledge in the field which is scattered and needs organisation. The goal of this article is to systematically review research works in the field of XAI and to try to define some boundaries in the field. From several hundreds of research articles focused on the concept of explainability, about 350 have been considered for review by using the following search methodology. In a first phase, Google Scholar was queried to find papers related to "explainable artificial intelligence", "explainable machine learning" and "interpretable machine learning". Subsequently, the bibliographic section of these articles was thoroughly examined to retrieve further relevant scientific studies. The first noticeable thing, as shown in figure 2 (a), is the distribution of the publication dates of selected research articles: sporadic in the 70s and 80s, receiving preliminary attention in the 90s, showing raising interest in 2000 and becoming a recognised body of knowledge after 2010. The first research concerned the development of an explanation-based system and its integration in a computer program designed to help doctors make diagnoses [3]. Some of the more recent papers focus on work devoted to the clustering of methods for explainability, motivating the need for organising the XAI literature [4, 5, 6].


AI Research Considerations for Human Existential Safety (ARCHES)

arXiv.org Artificial Intelligence

Framed in positive terms, this report examines how technical AI research might be steered in a manner that is more attentive to humanity's long-term prospects for survival as a species. In negative terms, we ask what existential risks humanity might face from AI development in the next century, and by what principles contemporary technical research might be directed to address those risks. A key property of hypothetical AI technologies is introduced, called \emph{prepotence}, which is useful for delineating a variety of potential existential risks from artificial intelligence, even as AI paradigms might shift. A set of \auxref{dirtot} contemporary research \directions are then examined for their potential benefit to existential safety. Each research direction is explained with a scenario-driven motivation, and examples of existing work from which to build. The research directions present their own risks and benefits to society that could occur at various scales of impact, and in particular are not guaranteed to benefit existential safety if major developments in them are deployed without adequate forethought and oversight. As such, each direction is accompanied by a consideration of potentially negative side effects.


On the Integration of LinguisticFeatures into Statistical and Neural Machine Translation

arXiv.org Artificial Intelligence

New machine translations (MT) technologies are emerging rapidly and with them, bold claims of achieving human parity such as: (i) the results produced approach "accuracy achieved by average bilingual human translators" (Wu et al., 2017b) or (ii) the "translation quality is at human parity when compared to professional human translators" (Hassan et al., 2018) have seen the light of day (Laubli et al., 2018). Aside from the fact that many of these papers craft their own definition of human parity, these sensational claims are often not supported by a complete analysis of all aspects involved in translation. Establishing the discrepancies between the strengths of statistical approaches to MT and the way humans translate has been the starting point of our research. By looking at MT output and linguistic theory, we were able to identify some remaining issues. The problems range from simple number and gender agreement errors to more complex phenomena such as the correct translation of aspectual values and tenses. Our experiments confirm, along with other studies (Bentivogli et al., 2016), that neural MT has surpassed statistical MT in many aspects. However, some problems remain and others have emerged. We cover a series of problems related to the integration of specific linguistic features into statistical and neural MT, aiming to analyse and provide a solution to some of them. Our work focuses on addressing three main research questions that revolve around the complex relationship between linguistics and MT in general. We identify linguistic information that is lacking in order for automatic translation systems to produce more accurate translations and integrate additional features into the existing pipelines. We identify overgeneralization or 'algorithmic bias' as a potential drawback of neural MT and link it to many of the remaining linguistic issues.


Vulnerabilities of Connectionist AI Applications: Evaluation and Defence

arXiv.org Artificial Intelligence

This article deals with the IT security of connectionist artificial intelligence (AI) applications, focusing on threats to integrity, one of the three IT security goals. Such threats are for instance most relevant in prominent AI computer vision applications. In order to present a holistic view on the IT security goal integrity, many additional aspects such as interpretability, robustness and documentation are taken into account. A comprehensive list of threats and possible mitigations is presented by reviewing the state-of-the-art literature. AI-specific vulnerabilities such as adversarial attacks and poisoning attacks as well as their AI-specific root causes are discussed in detail. Additionally and in contrast to former reviews, the whole AI supply chain is analysed with respect to vulnerabilities, including the planning, data acquisition, training, evaluation and operation phases. The discussion of mitigations is likewise not restricted to the level of the AI system itself but rather advocates viewing AI systems in the context of their supply chains and their embeddings in larger IT infrastructures and hardware devices. Based on this and the observation that adaptive attackers may circumvent any single published AI-specific defence to date, the article concludes that single protective measures are not sufficient but rather multiple measures on different levels have to be combined to achieve a minimum level of IT security for AI applications.


A review of machine learning applications in wildfire science and management

arXiv.org Machine Learning

Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications including neural networks and expert systems. Since then the field has rapidly progressed congruently with the wide adoption of machine learning (ML) in the environmental sciences. Here, we present a scoping review of ML in wildfire science and management. Our objective is to improve awareness of ML among wildfire scientists and managers, as well as illustrate the challenging range of problems in wildfire science available to data scientists. We first present an overview of popular ML approaches used in wildfire science to date, and then review their use in wildfire science within six problem domains: 1) fuels characterization, fire detection, and mapping; 2) fire weather and climate change; 3) fire occurrence, susceptibility, and risk; 4) fire behavior prediction; 5) fire effects; and 6) fire management. We also discuss the advantages and limitations of various ML approaches and identify opportunities for future advances in wildfire science and management within a data science context. We identified 298 relevant publications, where the most frequently used ML methods included random forests, MaxEnt, artificial neural networks, decision trees, support vector machines, and genetic algorithms. There exists opportunities to apply more current ML methods (e.g., deep learning and agent based learning) in wildfire science. However, despite the ability of ML models to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of fire processes across multiple scales, while the complexity of some ML methods requires sophisticated knowledge for their application. Finally, we stress that the wildfire research and management community plays an active role in providing relevant, high quality data for use by practitioners of ML methods.


Artificial Intelligence for Social Good: A Survey

arXiv.org Artificial Intelligence

Its impact is drastic and real: Youtube's AIdriven recommendation system would present sports videos for days if one happens to watch a live baseball game on the platform [1]; email writing becomes much faster with machine learning (ML) based auto-completion [2]; many businesses have adopted natural language processing based chatbots as part of their customer services [3]. AI has also greatly advanced human capabilities in complex decision-making processes ranging from determining how to allocate security resources to protect airports [4] to games such as poker [5] and Go [6]. All such tangible and stunning progress suggests that an "AI summer" is happening. As some put it, "AI is the new electricity" [7]. Meanwhile, in the past decade, an emerging theme in the AI research community is the so-called "AI for social good" (AI4SG): researchers aim at developing AI methods and tools to address problems at the societal level and improve the wellbeing of the society.


Advances and Open Problems in Federated Learning

arXiv.org Machine Learning

Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.


What is this Article about? Extreme Summarization with Topic-aware Convolutional Neural Networks

Journal of Artificial Intelligence Research

We introduce "extreme summarization," a new single-document summarization task which aims at creating a short, one-sentence news summary answering the question "What is the article about?". We argue that extreme summarization, by nature, is not amenable to extractive strategies and requires an abstractive modeling approach. In the hope of driving research on this task further: (a) we collect a real-world, large scale dataset by harvesting online articles from the British Broadcasting Corporation (BBC); and (b) propose a novel abstractive model which is conditioned on the article's topics and based entirely on convolutional neural networks. We demonstrate experimentally that this architecture captures long-range dependencies in a document and recognizes pertinent content, outperforming an oracle extractive system and state-of-the-art abstractive approaches when evaluated automatically and by humans on the extreme summarization dataset.


What is this Article about? Extreme Summarization with Topic-aware Convolutional Neural Networks

Journal of Artificial Intelligence Research

We introduce "extreme summarization," a new single-document summarization task which aims at creating a short, one-sentence news summary answering the question "What is the article about?". We argue that extreme summarization, by nature, is not amenable to extractive strategies and requires an abstractive modeling approach. In the hope of driving research on this task further: (a) we collect a real-world, large scale dataset by harvesting online articles from the British Broadcasting Corporation (BBC); and (b) propose a novel abstractive model which is conditioned on the article's topics and based entirely on convolutional neural networks. We demonstrate experimentally that this architecture captures long-range dependencies in a document and recognizes pertinent content, outperforming an oracle extractive system and state-of-the-art abstractive approaches when evaluated automatically and by humans on the extreme summarization dataset.