Goto

Collaborating Authors

Results


Suicidal Text Analysis Using NLP

#artificialintelligence

It is estimated that each year many people, most of whom are teenagers and young adults die by suicide worldwide. Suicide receives special attention with many countries developing national strategies for prevention. It is found that, social media is one of the most powerful tool from where we can analyze the text and estimate the chances of suicidal thoughts. Using nlp we can analyze twitter and reddit texts monitor the actions of that person. The most difficult part to prevent suicide is to detect and understand the complex risk factors and warning signs that may lead to suicide.


Multimodal Classification: Current Landscape, Taxonomy and Future Directions

arXiv.org Artificial Intelligence

Multimodal classification research has been gaining popularity in many domains that collect more data from multiple sources including satellite imagery, biometrics, and medicine. However, the lack of consistent terminology and architectural descriptions makes it difficult to compare different existing solutions. We address these challenges by proposing a new taxonomy for describing such systems based on trends found in recent publications on multimodal classification. Many of the most difficult aspects of unimodal classification have not yet been fully addressed for multimodal datasets including big data, class imbalance, and instance level difficulty. We also provide a discussion of these challenges and future directions.


Twitter User Representation using Weakly Supervised Graph Embedding

arXiv.org Artificial Intelligence

Social media platforms provide convenient means for users to participate in multiple online activities on various contents and create fast widespread interactions. However, this rapidly growing access has also increased the diverse information, and characterizing user types to understand people's lifestyle decisions shared in social media is challenging. In this paper, we propose a weakly supervised graph embedding based framework for understanding user types. We evaluate the user embedding learned using weak supervision over well-being related tweets from Twitter, focusing on 'Yoga', 'Keto diet'. Experiments on real-world datasets demonstrate that the proposed framework outperforms the baselines for detecting user types. Finally, we illustrate data analysis on different types of users (e.g., practitioner vs. promotional) from our dataset. While we focus on lifestyle-related tweets (i.e., yoga, keto), our method for constructing user representation readily generalizes to other domains.


The Role of Social Movements, Coalitions, and Workers in Resisting Harmful Artificial Intelligence and Contributing to the Development of Responsible AI

arXiv.org Artificial Intelligence

There is mounting public concern over the influence that AI based systems has in our society. Coalitions in all sectors are acting worldwide to resist hamful applications of AI. From indigenous people addressing the lack of reliable data, to smart city stakeholders, to students protesting the academic relationships with sex trafficker and MIT donor Jeffery Epstein, the questionable ethics and values of those heavily investing in and profiting from AI are under global scrutiny. There are biased, wrongful, and disturbing assumptions embedded in AI algorithms that could get locked in without intervention. Our best human judgment is needed to contain AI's harmful impact. Perhaps one of the greatest contributions of AI will be to make us ultimately understand how important human wisdom truly is in life on earth.


Analysis of Twitter Users' Lifestyle Choices using Joint Embedding Model

arXiv.org Artificial Intelligence

Multiview representation learning of data can help construct coherent and contextualized users' representations on social media. This paper suggests a joint embedding model, incorporating users' social and textual information to learn contextualized user representations used for understanding their lifestyle choices. We apply our model to tweets related to two lifestyle activities, `Yoga' and `Keto diet' and use it to analyze users' activity type and motivation. We explain the data collection and annotation process in detail and provide an in-depth analysis of users from different classes based on their Twitter content. Our experiments show that our model results in performance improvements in both domains.


The Healthy States of America: Creating a Health Taxonomy with Social Media

arXiv.org Artificial Intelligence

Since the uptake of social media, researchers have mined online discussions to track the outbreak and evolution of specific diseases or chronic conditions such as influenza or depression. To broaden the set of diseases under study, we developed a Deep Learning tool for Natural Language Processing that extracts mentions of virtually any medical condition or disease from unstructured social media text. With that tool at hand, we processed Reddit and Twitter posts, analyzed the clusters of the two resulting co-occurrence networks of conditions, and discovered that they correspond to well-defined categories of medical conditions. This resulted in the creation of the first comprehensive taxonomy of medical conditions automatically derived from online discussions. We validated the structure of our taxonomy against the official International Statistical Classification of Diseases and Related Health Problems (ICD-11), finding matches of our clusters with 20 official categories, out of 22. Based on the mentions of our taxonomy's sub-categories on Reddit posts geo-referenced in the U.S., we were then able to compute disease-specific health scores. As opposed to counts of disease mentions or counts with no knowledge of our taxonomy's structure, we found that our disease-specific health scores are causally linked with the officially reported prevalence of 18 conditions.


Fairness for Unobserved Characteristics: Insights from Technological Impacts on Queer Communities

arXiv.org Artificial Intelligence

Advances in algorithmic fairness have largely omitted sexual orientation and gender identity. We explore queer concerns in privacy, censorship, language, online safety, health, and employment to study the positive and negative effects of artificial intelligence on queer communities. These issues underscore the need for new directions in fairness research that take into account a multiplicity of considerations, from privacy preservation, context sensitivity and process fairness, to an awareness of sociotechnical impact and the increasingly important role of inclusive and participatory research processes. Most current approaches for algorithmic fairness assume that the target characteristics for fairness--frequently, race and legal gender--can be observed or recorded. Sexual orientation and gender identity are prototypical instances of unobserved characteristics, which are frequently missing, unknown or fundamentally unmeasurable. This paper highlights the importance of developing new approaches for algorithmic fairness that break away from the prevailing assumption of observed characteristics.


Transdisciplinary AI Observatory -- Retrospective Analyses and Future-Oriented Contradistinctions

arXiv.org Artificial Intelligence

In the last years, AI safety gained international recognition in the light of heterogeneous safety-critical and ethical issues that risk overshadowing the broad beneficial impacts of AI. In this context, the implementation of AI observatory endeavors represents one key research direction. This paper motivates the need for an inherently transdisciplinary AI observatory approach integrating diverse retrospective and counterfactual views. We delineate aims and limitations while providing hands-on-advice utilizing concrete practical examples. Distinguishing between unintentionally and intentionally triggered AI risks with diverse socio-psycho-technological impacts, we exemplify a retrospective descriptive analysis followed by a retrospective counterfactual risk analysis. Building on these AI observatory tools, we present near-term transdisciplinary guidelines for AI safety. As further contribution, we discuss differentiated and tailored long-term directions through the lens of two disparate modern AI safety paradigms. For simplicity, we refer to these two different paradigms with the terms artificial stupidity (AS) and eternal creativity (EC) respectively. While both AS and EC acknowledge the need for a hybrid cognitive-affective approach to AI safety and overlap with regard to many short-term considerations, they differ fundamentally in the nature of multiple envisaged long-term solution patterns. By compiling relevant underlying contradistinctions, we aim to provide future-oriented incentives for constructive dialectics in practical and theoretical AI safety research.


Does Yoga Make You Happy? Analyzing Twitter User Happiness using Textual and Temporal Information

arXiv.org Artificial Intelligence

Although yoga is a multi-component practice to hone the body and mind and be known to reduce anxiety and depression, there is still a gap in understanding people's emotional state related to yoga in social media. In this study, we investigate the causal relationship between practicing yoga and being happy by incorporating textual and temporal information of users using Granger causality. To find out causal features from the text, we measure two variables (i) Yoga activity level based on content analysis and (ii) Happiness level based on emotional state. To understand users' yoga activity, we propose a joint embedding model based on the fusion of neural networks with attention mechanism by leveraging users' social and textual information. For measuring the emotional state of yoga users (target domain), we suggest a transfer learning approach to transfer knowledge from an attention-based neural network model trained on a source domain. Our experiment on Twitter dataset demonstrates that there are 1447 users where "yoga Granger-causes happiness".


GPT-3 Creative Fiction

#artificialintelligence

What if I told a story here, how would that story start?" Thus, the summarization prompt: "My second grader asked me what this passage means: …" When a given prompt isn't working and GPT-3 keeps pivoting into other modes of completion, that may mean that one hasn't constrained it enough by imitating a correct output, and one needs to go further; writing the first few words or sentence of the target output may be necessary.