Goto

Collaborating Authors

Results


15 Best Udacity Machine Learning Courses

#artificialintelligence

This is an intermediate-level free artificial intelligence course. This course will teach the basics of modern AI as well as some of the representative applications of AI including machine learning, probabilistic reasoning, robotics, computer vision, and natural language processing. To understand this course, you should have some previous understanding of probability theory and linear algebra.


Question Generation using Natural Language processing

#artificialintelligence

Auto generate assessments in edtech like MCQs, True/False, Fill-in-the-blanks etc using state-of-the-art NLP techniques. This course focuses on using state-of-the-art Natural Language processing techniques to solve the problem of question generation in edtech. If we pick up any middle school textbook, at the end of every chapter we see assessment questions like MCQs, True/False questions, Fill-in-the-blanks, Match the following, etc. In this course, we will see how we can take any text content and generate these assessment questions using NLP techniques. This course will be a very practical use case of NLP where we put basic algorithms like word vectors (word2vec, Glove, etc) to recent advancements like BERT, openAI GPT-2, and T5 transformers to real-world use.


The AI Index 2021 Annual Report

arXiv.org Artificial Intelligence

Welcome to the fourth edition of the AI Index Report. This year we significantly expanded the amount of data available in the report, worked with a broader set of external organizations to calibrate our data, and deepened our connections with the Stanford Institute for Human-Centered Artificial Intelligence (HAI). The AI Index Report tracks, collates, distills, and visualizes data related to artificial intelligence. Its mission is to provide unbiased, rigorously vetted, and globally sourced data for policymakers, researchers, executives, journalists, and the general public to develop intuitions about the complex field of AI. The report aims to be the most credible and authoritative source for data and insights about AI in the world.


Deep Learning: Convolutional Neural Networks in Python

#artificialintelligence

For Data Science, Machine Learning, and AI Created by Lazy Programmer Inc. English [Auto], Italian [Auto], Preview this Udemy Course GET COUPON CODE Description *** NOW IN TENSORFLOW 2 and PYTHON 3 *** Learn about one of the most powerful Deep Learning architectures yet! The Convolutional Neural Network (CNN) has been used to obtain state-of-the-art results in computer vision tasks such as object detection, image segmentation, and generating photo-realistic images of people and things that don't exist in the real world! This course will teach you the fundamentals of convolution and why it's useful for deep learning and even NLP (natural language processing). You will learn about modern techniques such as data augmentation and batch normalization, and build modern architectures such as VGG yourself. This course will teach you: The basics of machine learning and neurons (just a review to get you warmed up!) Neural networks for classification and regression (just a review to get you warmed up!) How to model image data in code How to model text data for NLP (including preprocessing steps for text) How to build an CNN using Tensorflow 2 How to use batch normalization and dropout regularization in Tensorflow 2 How to do image classification in Tensorflow 2 How to do data preprocessing for your own custom image dataset How to use Embeddings in Tensorflow 2 for NLP How to build a Text Classification CNN for NLP (examples: spam detection, sentiment analysis, parts-of-speech tagging, named entity recognition) All of the materials required for this course can be downloaded and installed for FREE.


A Statistician Teaches Deep Learning

arXiv.org Machine Learning

Deep learning (DL) has become an essential methodology in many industries, but it is not yet part of the standard statistical curriculum. We believe it is important to bring DL into the purview of statisticians. But there are challenges--aspects of DL do not align with conventional statistical wisdom, and there are practical and theoretical barriers that arise when trying to teach this material. Nonetheless, DL has achieved tremendous successes in the last decade which make it a critical statistical tool and object of study. It is the foundation for autonomous vehicles(Grigorescu et al. (2020), Luckow et al. (2017)), which have the potential for revolutionary advances in safety, fuel economy, and congestion reduction (Ma et al. (2015), Perrotta et al. (2017), Rudin et al. (2017), Wang and Sng (2015)). DL can read x-rays more accurately than trained radiologists (Abbas et al. (2019), Razzak et al. (2018), Zhu et al. (2019)), it outperforms humans in complex strategy games (Sethy et al. (2015), Vinayls et al. (2019)), and has set the standard for automatic language translation (Luong and Manning (2016), Luong et al. (2015), See et al. (2016)). Looking ahead, DL is poised to control robotic sorting of waste (Bircanoglu et al. (2018), Sagar et al. (2016)), coordinate complex medical treatment and reimbursement management in the U.S. healthcare system (Ahmed et al. (2020), Dai and Wang (2018), Loh and Then (2017)), and optimize dynamical systems in high-tech manufacturing (Shang and You (2019)).


Personalized Education in the AI Era: What to Expect Next?

arXiv.org Artificial Intelligence

The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to ultimately meet her desired goal. This concept emerged several years ago and is being adopted by a rapidly-growing number of educational institutions around the globe. In recent years, the boost of artificial intelligence (AI) and machine learning (ML), together with the advances in big data analysis, has unfolded novel perspectives to enhance personalized education in numerous dimensions. By taking advantage of AI/ML methods, the educational platform precisely acquires the student's characteristics. This is done, in part, by observing the past experiences as well as analyzing the available big data through exploring the learners' features and similarities. It can, for example, recommend the most appropriate content among numerous accessible ones, advise a well-designed long-term curriculum, connect appropriate learners by suggestion, accurate performance evaluation, and the like. Still, several aspects of AI-based personalized education remain unexplored. These include, among others, compensating for the adverse effects of the absence of peers, creating and maintaining motivations for learning, increasing diversity, removing the biases induced by the data and algorithms, and the like. In this paper, while providing a brief review of state-of-the-art research, we investigate the challenges of AI/ML-based personalized education and discuss potential solutions.


Classification of Pedagogical content using conventional machine learning and deep learning model

arXiv.org Artificial Intelligence

Billions of users create a large amount of data every day, which in a sense comes from various types of sources. This data is in most cases unorganized and unclassified and is presented in various formats such as text, video, audio, or images. Processing and analyzing this data is a major challenge that we face every day. The problem of unstructured and unorganized text dates back to ancient times, but Text Classification as a discipline first appeared in the early 60s, where 30 years later the interest in various spheres for it increased [1], and began to be applied in various types of domains and applications such as for movie review [2], document classification [3], ecommerce [4], social media [5], online courses [6, 7], etc. As interest has grown more in the upcoming years, the uses start solving the problems with higher accurate results in more flexible ways. Knowledge Engineering (KE) was one of the applications of text classification in the late 80s, where the process took place by manually defining rules based on expert knowledge in terms of categorization of the document for a particular category [1]. After this time, there was a great wave of use of various modern and advanced methods for text classification, which all improved this discipline and made it more interesting for scientists and researchers, more specifically the use of machine learning techniques. These techniques bring a lot of advantages, as they are now in very large numbers, where they provide solutions to almost every problem we may encounter. The need for education and learning dates back to ancient times, where people are constantly improving and trying to gain as much knowledge as possible.


2021 Natural Language Processing in Python for Beginners

#artificialintelligence

Welcome to KGP Talkie's Natural Language Processing (NLP) course. It is designed to give you a complete understanding of Text Processing and Mining with the use of State-of-the-Art NLP algorithms in Python. We will learn Spacy in detail and we will also explore the uses of NLP in real-life. This course covers the basics of NLP to advance topics like word2vec, GloVe, Deep Learning for NLP like CNN, ANN, and LSTM. I will also show you how you can optimize your ML code by using various tools of sklean in python.


Natural Language Processing (NLP) in Python for Beginners

#artificialintelligence

Welcome to KGP Talkie's Natural Language Processing course. It is designed to give you a complete understanding of Text Processing and Mining with the use of State-of-the-Art NLP algorithms in Python. We will learn Spacy in details and we will also explore the uses of NLP in real-life. This course covers the basics of NLP to advance topics like word2vec, GloVe, Deep Learning for NLP like CNN, ANN, and LSTM. I will also show you how you can optimize your ML code by using various tools of sklean in python.