Collaborating Authors


Lexico-semantic and affective modelling of Spanish poetry: A semi-supervised learning approach Artificial Intelligence

Text classification tasks have improved substantially during the last years by the usage of transformers. However, the majority of researches focus on prose texts, with poetry receiving less attention, specially for Spanish language. In this paper, we propose a semi-supervised learning approach for inferring 21 psychological categories evoked by a corpus of 4572 sonnets, along with 10 affective and lexico-semantic multiclass ones. The subset of poems used for training an evaluation includes 270 sonnets. With our approach, we achieve an AUC beyond 0.7 for 76% of the psychological categories, and an AUC over 0.65 for 60% on the multiclass ones. The sonnets are modelled using transformers, through sentence embeddings, along with lexico-semantic and affective features, obtained by using external lexicons. Consequently, we see that this approach provides an AUC increase of up to 0.12, as opposed to using transformers alone.

Semi-supervised Learning for Marked Temporal Point Processes Artificial Intelligence

Temporal Point Processes (TPPs) are often used to represent the sequence of events ordered as per the time of occurrence. Owing to their flexible nature, TPPs have been used to model different scenarios and have shown applicability in various real-world applications. While TPPs focus on modeling the event occurrence, Marked Temporal Point Process (MTPP) focuses on modeling the category/class of the event as well (termed as the marker). Research in MTPP has garnered substantial attention over the past few years, with an extensive focus on supervised algorithms. Despite the research focus, limited attention has been given to the challenging problem of developing solutions in semi-supervised settings, where algorithms have access to a mix of labeled and unlabeled data. This research proposes a novel algorithm for Semi-supervised Learning for Marked Temporal Point Processes (SSL-MTPP) applicable in such scenarios. The proposed SSL-MTPP algorithm utilizes a combination of labeled and unlabeled data for learning a robust marker prediction model. The proposed algorithm utilizes an RNN-based Encoder-Decoder module for learning effective representations of the time sequence. The efficacy of the proposed algorithm has been demonstrated via multiple protocols on the Retweet dataset, where the proposed SSL-MTPP demonstrates improved performance in comparison to the traditional supervised learning approach.

Recent Deep Semi-supervised Learning Approaches and Related Works Artificial Intelligence

The author of this work proposes an overview of the recent semi-supervised learning approaches and related works. Despite the remarkable success of neural networks in various applications, there exist few formidable constraints including the need for a large amount of labeled data. Therefore, semi-supervised learning, which is a learning scheme in which the scarce labels and a larger amount of unlabeled data are utilized to train models (e.g., deep neural networks) is getting more important. Based on the key assumptions of semi-supervised learning, which are the manifold assumption, cluster assumption, and continuity assumption, the work reviews the recent semi-supervised learning approaches. In particular, the methods in regard to using deep neural networks in a semi-supervised learning setting are primarily discussed. In addition, the existing works are first classified based on the underlying idea and explained, and then the holistic approaches that unify the aforementioned ideas are detailed.

Exponential Moving Average Normalization for Self-supervised and Semi-supervised Learning Artificial Intelligence

We present a plug-in replacement for batch normalization (BN) called exponential moving average normalization (EMAN), which improves the performance of existing student-teacher based self- and semi-supervised learning techniques. Unlike the standard BN, where the statistics are computed within each batch, EMAN, used in the teacher, updates its statistics by exponential moving average from the BN statistics of the student. This design reduces the intrinsic cross-sample dependency of BN and enhance the generalization of the teacher. EMAN improves strong baselines for self-supervised learning by 4-6/1-2 points and semi-supervised learning by about 7/2 points, when 1%/10% supervised labels are available on ImageNet. These improvements are consistent across methods, network architectures, training duration, and datasets, demonstrating the general effectiveness of this technique.

Exploring Semi-Supervised Learning for Predicting Listener Backchannels Artificial Intelligence

Developing human-like conversational agents is a prime area in HCI research and subsumes many tasks. Predicting listener backchannels is one such actively-researched task. While many studies have used different approaches for backchannel prediction, they all have depended on manual annotations for a large dataset. This is a bottleneck impacting the scalability of development. To this end, we propose using semi-supervised techniques to automate the process of identifying backchannels, thereby easing the annotation process. To analyze our identification module's feasibility, we compared the backchannel prediction models trained on (a) manually-annotated and (b) semi-supervised labels. Quantitative analysis revealed that the proposed semi-supervised approach could attain 95% of the former's performance. Our user-study findings revealed that almost 60% of the participants found the backchannel responses predicted by the proposed model more natural. Finally, we also analyzed the impact of personality on the type of backchannel signals and validated our findings in the user-study.

Auxiliary Task Reweighting for Minimum-data Learning Machine Learning

Supervised learning requires a large amount of training data, limiting its application where labeled data is scarce. To compensate for data scarcity, one possible method is to utilize auxiliary tasks to provide additional supervision for the main task. Assigning and optimizing the importance weights for different auxiliary tasks remains an crucial and largely understudied research question. In this work, we propose a method to automatically reweight auxiliary tasks in order to reduce the data requirement on the main task. Specifically, we formulate the weighted likelihood function of auxiliary tasks as a surrogate prior for the main task. By adjusting the auxiliary task weights to minimize the divergence between the surrogate prior and the true prior of the main task, we obtain a more accurate prior estimation, achieving the goal of minimizing the required amount of training data for the main task and avoiding a costly grid search. In multiple experimental settings (e.g. semi-supervised learning, multi-label classification), we demonstrate that our algorithm can effectively utilize limited labeled data of the main task with the benefit of auxiliary tasks compared with previous task reweighting methods. We also show that under extreme cases with only a few extra examples (e.g. few-shot domain adaptation), our algorithm results in significant improvement over the baseline.

Semi-Supervised Learning Approach to Discover Enterprise User Insights from Feedback and Support Machine Learning

With the evolution of the cloud and customer centric culture, we inherently accumulate huge repositories of textual reviews, feedback, and support data.This has driven enterprises to seek and research engagement patterns, user network analysis, topic detections, etc.However, huge manual work is still necessary to mine data to be able to mine actionable outcomes. In this paper, we proposed and developed an innovative Semi-Supervised Learning approach by utilizing Deep Learning and Topic Modeling to have a better understanding of the user voice.This approach combines a BERT-based multiclassification algorithm through supervised learning combined with a novel Probabilistic and Semantic Hybrid Topic Inference (PSHTI) Model through unsupervised learning, aiming at automating the process of better identifying the main topics or areas as well as the sub-topics from the textual feedback and support.There are three major break-through: 1. As the advancement of deep learning technology, there have been tremendous innovations in the NLP field, yet the traditional topic modeling as one of the NLP applications lag behind the tide of deep learning. In the methodology and technical perspective, we adopt transfer learning to fine-tune a BERT-based multiclassification system to categorize the main topics and then utilize the novel PSHTI model to infer the sub-topics under the predicted main topics. 2. The traditional unsupervised learning-based topic models or clustering methods suffer from the difficulty of automatically generating a meaningful topic label, but our system enables mapping the top words to the self-help issues by utilizing domain knowledge about the product through web-crawling. 3. This work provides a prominent showcase by leveraging the state-of-the-art methodology in the real production to help shed light to discover user insights and drive business investment priorities.

An Overview of Deep Semi-Supervised Learning Machine Learning

Deep neural networks demonstrated their ability to provide remarkable performances on a wide range of supervised learning tasks (e.g., image classification) when trained on extensive collections of labeled data (e.g., ImageNet). However, creating such large datasets requires a considerable amount of resources, time, and effort. Such resources may not be available in many practical cases, limiting the adoption and the application of many deep learning methods. In a search for more data-efficient deep learning methods to overcome the need for large annotated datasets, there is a rising research interest in semi-supervised learning and its applications to deep neural networks to reduce the amount of labeled data required, by either developing novel methods or adopting existing semi-supervised learning frameworks for a deep learning setting. In this paper, we provide a comprehensive overview of deep semi-supervised learning, starting with an introduction to the field, followed by a summarization of the dominant semi-supervised approaches in deep learning.

Recovering Petaflops in Contrastive Semi-Supervised Learning of Visual Representations Machine Learning

We investigate a strategy for improving the computational efficiency of contrastive learning of visual representations by leveraging a small amount of supervised information during pre-training. We propose a semi-supervised loss, SuNCEt, based on noise-contrastive estimation, that aims to distinguish examples of different classes in addition to the self-supervised instance-wise pretext tasks. We find that SuNCEt can be used to match the semi-supervised learning accuracy of previous contrastive approaches with significantly less computational effort. Our main insight is that leveraging even a small amount of labeled data during pre-training, and not only during fine-tuning, provides an important signal that can significantly accelerate contrastive learning of visual representations.

Self-supervised Learning on Graphs: Deep Insights and New Direction Machine Learning

The success of deep learning notoriously requires larger amounts of costly annotated data. This has led to the development of self-supervised learning (SSL) that aims to alleviate this limitation by creating domain specific pretext tasks on unlabeled data. Simultaneously, there are increasing interests in generalizing deep learning to the graph domain in the form of graph neural networks (GNNs). GNNs can naturally utilize unlabeled nodes through the simple neighborhood aggregation that is unable to thoroughly make use of unlabeled nodes. Thus, we seek to harness SSL for GNNs to fully exploit the unlabeled data. Different from data instances in the image and text domains, nodes in graphs present unique structure information and they are inherently linked indicating not independent and identically distributed (or i.i.d.). Such complexity is a double-edged sword for SSL on graphs. On the one hand, it determines that it is challenging to adopt solutions from the image and text domains to graphs and dedicated efforts are desired. On the other hand, it provides rich information that enables us to build SSL from a variety of perspectives. Thus, in this paper, we first deepen our understandings on when, why, and which strategies of SSL work with GNNs by empirically studying numerous basic SSL pretext tasks on graphs. Inspired by deep insights from the empirical studies, we propose a new direction SelfTask to build advanced pretext tasks that are able to achieve state-of-the-art performance on various real-world datasets. The specific experimental settings to reproduce our results can be found in \url{}.