Collaborating Authors




The book The Age of AI and Our Human Future is a graduate school level text. The Age of AI is the future, and it's coming way too fast. The human race has never been more challenged. We are all about to make some huge decisions. It is almost a magisterium for human life in the Fourth Industrial Revolution age. It is written by thought leaders of the highest-level, each in their respective fields. The first author is Henry Kissinger the former Secretary of State and NSC advisor to two US presidents, a philosopher and Nobel Peace Prize Laureate. At age 98 he has seen it all and done it, and remains an international counselor to politicians and business magnates. The second author, Eric Schmidt consolidated Google into the cutting edge technology giant that it is today. In this role he is a sought out counselor and business mogul. The third author is Daniel Huttenlocher -- the inaugural Dean of the MIT College of Computing. It is the place where AI is reinvented and recreated on self-teaching algorithm development and data aggregation from the global network platforms and the internet that occur 24/7 at a neck breaking pace. This compendium though incomplete, has more authors, contributors and editors. Meredith Potter is a contributor who augments Kissinger's intellectual pursuits she drafted, edited the texts and made the chapters flowing clearly and seamless. These and other editors made this textbook intellectually rich, informative, and easy to read. The Age of AI introduces the reader to the occurring changes we experienced in our society today. You are about to encounter many topics that involve the future in its continuing evolution. Every high school student is adapting to the new classroom intellectual reality. Here are two points to consider. First, the technology that this text discusses is not available in your community college courses or on other educational websites.

State of AI Ethics Report (Volume 6, February 2022) Artificial Intelligence

This report from the Montreal AI Ethics Institute (MAIEI) covers the most salient progress in research and reporting over the second half of 2021 in the field of AI ethics. Particular emphasis is placed on an "Analysis of the AI Ecosystem", "Privacy", "Bias", "Social Media and Problematic Information", "AI Design and Governance", "Laws and Regulations", "Trends", and other areas covered in the "Outside the Boxes" section. The two AI spotlights feature application pieces on "Constructing and Deconstructing Gender with AI-Generated Art" as well as "Will an Artificial Intellichef be Cooking Your Next Meal at a Michelin Star Restaurant?". Given MAIEI's mission to democratize AI, submissions from external collaborators have featured, such as pieces on the "Challenges of AI Development in Vietnam: Funding, Talent and Ethics" and using "Representation and Imagination for Preventing AI Harms". The report is a comprehensive overview of what the key issues in the field of AI ethics were in 2021, what trends are emergent, what gaps exist, and a peek into what to expect from the field of AI ethics in 2022. It is a resource for researchers and practitioners alike in the field to set their research and development agendas to make contributions to the field of AI ethics.

Ethics in Ai -- Current issues, existing precautions, and probable solutions


Introduction- Most of the Artificial Intelligent (Ai) Systems are developed as black boxes, especially Machine Learning and Deep Learning-based systems. Nowadays, these Machine and Deep Learning-based systems make decisions for our daily life, and should be explainable and should not be taken for granted to the end-users. The implication of such systems is rarely explored for the efficiency in the public usage (i.e., usage in -- Agriculture, Air Combat, Military Training, Education, Finance, Health Care, Human Resources, Customer Service, Autonomous Vehicles, Social Media, and several others[1]-[9]). Not only these, but the future might also be relying on Ai based system that will do our laundry, mow our lawn, fight wars [9]. Thus, there is so much room to improve the transparency of the systems along with fairness and accountability. There are some works that already stated the necessity of guidelines and governance of the Ai based systems, but more exposure is required in each area of application.

Challenges of Artificial Intelligence -- From Machine Learning and Computer Vision to Emotional Intelligence Artificial Intelligence

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.

Big Data Industry Predictions for 2022 - insideBIGDATA


As a result, all major cloud providers are either offering or promising to offer Kubernetes options that run on-premises and in multiple clouds. While Kubernetes is making the cloud more open, cloud providers are trying to become "stickier" with more vertical integration. From database-as-a-service (DBaaS) to AI/ML services, the cloud providers are offering options that make it easier and faster to code. Organizations should not take a "one size fits all" approach to the cloud. For applications and environments that can scale quickly, Kubernetes may be the right option. For stable applications, leveraging DBaaS and built-in AI/ML could be the perfect solution. For infrastructure services, SaaS offerings may be the optimal approach. The number of options will increase, so create basic business guidelines for your teams.

Artificial Intelligence Ethics and Safety: practical tools for creating "good" models Artificial Intelligence

The AI Robotics Ethics Society (AIRES) is a non-profit organization founded in 2018 by Aaron Hui to promote awareness and the importance of ethical implementation and regulation of AI. AIRES is now an organization with chapters at universities such as UCLA (Los Angeles), USC (University of Southern California), Caltech (California Institute of Technology), Stanford University, Cornell University, Brown University, and the Pontifical Catholic University of Rio Grande do Sul (Brazil). AIRES at PUCRS is the first international chapter of AIRES, and as such, we are committed to promoting and enhancing the AIRES Mission. Our mission is to focus on educating the AI leaders of tomorrow in ethical principles to ensure that AI is created ethically and responsibly. As there are still few proposals for how we should implement ethical principles and normative guidelines in the practice of AI system development, the goal of this work is to try to bridge this gap between discourse and praxis. Between abstract principles and technical implementation. In this work, we seek to introduce the reader to the topic of AI Ethics and Safety. At the same time, we present several tools to help developers of intelligent systems develop "good" models. This work is a developing guide published in English and Portuguese. Contributions and suggestions are welcome.

Artificial Intellgence -- Application in Life Sciences and Beyond. The Upper Rhine Artificial Intelligence Symposium UR-AI 2021 Artificial Intelligence

The TriRhenaTech alliance presents the accepted papers of the 'Upper-Rhine Artificial Intelligence Symposium' held on October 27th 2021 in Kaiserslautern, Germany. Topics of the conference are applications of Artificial Intellgence in life sciences, intelligent systems, industry 4.0, mobility and others. The TriRhenaTech alliance is a network of universities in the Upper-Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, Offenburg and Trier, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.

Explainable AI for B5G/6G: Technical Aspects, Use Cases, and Research Challenges Artificial Intelligence

When 5G began its commercialisation journey around 2020, the discussion on the vision of 6G also surfaced. Researchers expect 6G to have higher bandwidth, coverage, reliability, energy efficiency, lower latency, and, more importantly, an integrated "human-centric" network system powered by artificial intelligence (AI). Such a 6G network will lead to an excessive number of automated decisions made every second. These decisions can range widely, from network resource allocation to collision avoidance for self-driving cars. However, the risk of losing control over decision-making may increase due to high-speed data-intensive AI decision-making beyond designers and users' comprehension. The promising explainable AI (XAI) methods can mitigate such risks by enhancing the transparency of the black box AI decision-making process. This survey paper highlights the need for XAI towards the upcoming 6G age in every aspect, including 6G technologies (e.g., intelligent radio, zero-touch network management) and 6G use cases (e.g., industry 5.0). Moreover, we summarised the lessons learned from the recent attempts and outlined important research challenges in applying XAI for building 6G systems. This research aligns with goals 9, 11, 16, and 17 of the United Nations Sustainable Development Goals (UN-SDG), promoting innovation and building infrastructure, sustainable and inclusive human settlement, advancing justice and strong institutions, and fostering partnership at the global level.

A Survey on AI Assurance Artificial Intelligence

Artificial Intelligence (AI) algorithms are increasingly providing decision making and operational support across multiple domains. AI includes a wide library of algorithms for different problems. One important notion for the adoption of AI algorithms into operational decision process is the concept of assurance. The literature on assurance, unfortunately, conceals its outcomes within a tangled landscape of conflicting approaches, driven by contradicting motivations, assumptions, and intuitions. Accordingly, albeit a rising and novel area, this manuscript provides a systematic review of research works that are relevant to AI assurance, between years 1985 - 2021, and aims to provide a structured alternative to the landscape. A new AI assurance definition is adopted and presented and assurance methods are contrasted and tabulated. Additionally, a ten-metric scoring system is developed and introduced to evaluate and compare existing methods. Lastly, in this manuscript, we provide foundational insights, discussions, future directions, a roadmap, and applicable recommendations for the development and deployment of AI assurance.

Trustworthy AI: From Principles to Practices Artificial Intelligence

Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.