Goto

Collaborating Authors

Results


Challenges of Artificial Intelligence -- From Machine Learning and Computer Vision to Emotional Intelligence

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.


Do You See What I See? Capabilities and Limits of Automated Multimedia Content Analysis

arXiv.org Artificial Intelligence

The ever-increasing amount of user-generated content online has led, in recent years, to an expansion in research and investment in automated content analysis tools. Scrutiny of automated content analysis has accelerated during the COVID-19 pandemic, as social networking services have placed a greater reliance on these tools due to concerns about health risks to their moderation staff from in-person work. At the same time, there are important policy debates around the world about how to improve content moderation while protecting free expression and privacy. In order to advance these debates, we need to understand the potential role of automated content analysis tools. This paper explains the capabilities and limitations of tools for analyzing online multimedia content and highlights the potential risks of using these tools at scale without accounting for their limitations. It focuses on two main categories of tools: matching models and computer prediction models. Matching models include cryptographic and perceptual hashing, which compare user-generated content with existing and known content. Predictive models (including computer vision and computer audition) are machine learning techniques that aim to identify characteristics of new or previously unknown content.


When Creators Meet the Metaverse: A Survey on Computational Arts

arXiv.org Artificial Intelligence

The metaverse, enormous virtual-physical cyberspace, has brought unprecedented opportunities for artists to blend every corner of our physical surroundings with digital creativity. This article conducts a comprehensive survey on computational arts, in which seven critical topics are relevant to the metaverse, describing novel artworks in blended virtual-physical realities. The topics first cover the building elements for the metaverse, e.g., virtual scenes and characters, auditory, textual elements. Next, several remarkable types of novel creations in the expanded horizons of metaverse cyberspace have been reflected, such as immersive arts, robotic arts, and other user-centric approaches fuelling contemporary creative outputs. Finally, we propose several research agendas: democratising computational arts, digital privacy, and safety for metaverse artists, ownership recognition for digital artworks, technological challenges, and so on. The survey also serves as introductory material for artists and metaverse technologists to begin creations in the realm of surrealistic cyberspace.


How to Generate Music Using Artificial Intelligence

#artificialintelligence

Growing up as a child, we all at some point in time must have wanted to learn to play musical instruments, be it piano, violin, guitar, ukelele, drums, or saxophone. However, I was not good at playing any of the instruments, and playing a musical instrument remained a dream for me until now. So I decided to make an Artificial Intelligence model which could generate unique and unlimited music for me. Yes! Now, I would never get tired of hearing the same songs again. The Artificial Intelligence model would generate each time a unique and melodious song that I can listen to.


Sequential Modelling with Applications to Music Recommendation, Fact-Checking, and Speed Reading

arXiv.org Artificial Intelligence

Sequential modelling entails making sense of sequential data, which naturally occurs in a wide array of domains. One example is systems that interact with users, log user actions and behaviour, and make recommendations of items of potential interest to users on the basis of their previous interactions. In such cases, the sequential order of user interactions is often indicative of what the user is interested in next. Similarly, for systems that automatically infer the semantics of text, capturing the sequential order of words in a sentence is essential, as even a slight re-ordering could significantly alter its original meaning. This thesis makes methodological contributions and new investigations of sequential modelling for the specific application areas of systems that recommend music tracks to listeners and systems that process text semantics in order to automatically fact-check claims, or "speed read" text for efficient further classification.


Representation Learning for Efficient and Effective Similarity Search and Recommendation

arXiv.org Artificial Intelligence

How data is represented and operationalized is critical for building computational solutions that are both effective and efficient. A common approach is to represent data objects as binary vectors, denoted \textit{hash codes}, which require little storage and enable efficient similarity search through direct indexing into a hash table or through similarity computations in an appropriate space. Due to the limited expressibility of hash codes, compared to real-valued representations, a core open challenge is how to generate hash codes that well capture semantic content or latent properties using a small number of bits, while ensuring that the hash codes are distributed in a way that does not reduce their search efficiency. State of the art methods use representation learning for generating such hash codes, focusing on neural autoencoder architectures where semantics are encoded into the hash codes by learning to reconstruct the original inputs of the hash codes. This thesis addresses the above challenge and makes a number of contributions to representation learning that (i) improve effectiveness of hash codes through more expressive representations and a more effective similarity measure than the current state of the art, namely the Hamming distance, and (ii) improve efficiency of hash codes by learning representations that are especially suited to the choice of search method. The contributions are empirically validated on several tasks related to similarity search and recommendation.


ChMusic: A Traditional Chinese Music Dataset for Evaluation of Instrument Recognition

arXiv.org Artificial Intelligence

Musical instruments recognition is a widely used application for music information retrieval. As most of previous musical instruments recognition dataset focus on western musical instruments, it is difficult for researcher to study and evaluate the area of traditional Chinese musical instrument recognition. This paper propose a traditional Chinese music dataset for training model and performance evaluation, named ChMusic. This dataset is free and publicly available, 11 traditional Chinese musical instruments and 55 traditional Chinese music excerpts are recorded in this dataset. Then an evaluation standard is proposed based on ChMusic dataset. With this standard, researchers can compare their results following the same rule, and results from different researchers will become comparable.


GAN Computers Generate Arts? A Survey on Visual Arts, Music, and Literary Text Generation using Generative Adversarial Network

arXiv.org Artificial Intelligence

"Art is the lie that enables us to realize the truth." - Pablo Picasso. For centuries, humans have dedicated themselves to producing arts to convey their imagination. The advancement in technology and deep learning in particular, has caught the attention of many researchers trying to investigate whether art generation is possible by computers and algorithms. Using generative adversarial networks (GANs), applications such as synthesizing photorealistic human faces and creating captions automatically from images were realized. This survey takes a comprehensive look at the recent works using GANs for generating visual arts, music, and literary text. A performance comparison and description of the various GAN architecture are also presented. Finally, some of the key challenges in art generation using GANs are highlighted along with recommendations for future work.


An Empirical Study on End-to-End Singing Voice Synthesis with Encoder-Decoder Architectures

arXiv.org Artificial Intelligence

With the rapid development of neural network architectures and speech processing models, singing voice synthesis with neural networks is becoming the cutting-edge technique of digital music production. In this work, in order to explore how to improve the quality and efficiency of singing voice synthesis, in this work, we use encoder-decoder neural models and a number of vocoders to achieve singing voice synthesis. We conduct experiments to demonstrate that the models can be trained using voice data with pitch information, lyrics and beat information, and the trained models can produce smooth, clear and natural singing voice that is close to real human voice. As the models work in the end-to-end manner, they allow users who are not domain experts to directly produce singing voice by arranging pitches, lyrics and beats.


A Generative Model for Raw Audio Using Transformer Architectures

arXiv.org Artificial Intelligence

This paper proposes a novel way of doing audio synthesis at the waveform level using Transformer architectures. We propose a deep neural network for generating waveforms, similar to wavenet. This is fully probabilistic, auto-regressive, and causal, i.e. each sample generated depends only on the previously observed samples. Our approach outperforms a widely used wavenet architecture by up to 9% on a similar dataset for predicting the next step. Using the attention mechanism, we enable the architecture to learn which audio samples are important for the prediction of the future sample. We show how causal transformer generative models can be used for raw waveform synthesis. We also show that this performance can be improved by another 2% by conditioning samples over a wider context. The flexibility of the current model to synthesize audio from latent representations suggests a large number of potential applications. The novel approach of using generative transformer architectures for raw audio synthesis is, however, still far away from generating any meaningful music, without using latent codes/meta-data to aid the generation process.