Goto

Collaborating Authors

Results


You Are What You Tweet: Profiling Users by Past Tweets to Improve Hate Speech Detection

arXiv.org Artificial Intelligence

Hate speech detection research has predominantly focused on purely content-based methods, without exploiting any additional context. We briefly critique pros and cons of this task formulation. We then investigate profiling users by their past utterances as an informative prior to better predict whether new utterances constitute hate speech. To evaluate this, we augment three Twitter hate speech datasets with additional timeline data, then embed this additional context into a strong baseline model. Promising results suggest merit for further investigation, though analysis is complicated by differences in annotation schemes and processes, as well as Twitter API limitations and data sharing policies.


Open Problems in Cooperative AI

arXiv.org Artificial Intelligence

Problems of cooperation--in which agents seek ways to jointly improve their welfare--are ubiquitous and important. They can be found at scales ranging from our daily routines--such as driving on highways, scheduling meetings, and working collaboratively--to our global challenges--such as peace, commerce, and pandemic preparedness. Arguably, the success of the human species is rooted in our ability to cooperate. Since machines powered by artificial intelligence are playing an ever greater role in our lives, it will be important to equip them with the capabilities necessary to cooperate and to foster cooperation. We see an opportunity for the field of artificial intelligence to explicitly focus effort on this class of problems, which we term Cooperative AI. The objective of this research would be to study the many aspects of the problems of cooperation and to innovate in AI to contribute to solving these problems. Central goals include building machine agents with the capabilities needed for cooperation, building tools to foster cooperation in populations of (machine and/or human) agents, and otherwise conducting AI research for insight relevant to problems of cooperation. This research integrates ongoing work on multi-agent systems, game theory and social choice, human-machine interaction and alignment, natural-language processing, and the construction of social tools and platforms. However, Cooperative AI is not the union of these existing areas, but rather an independent bet about the productivity of specific kinds of conversations that involve these and other areas. We see opportunity to more explicitly focus on the problem of cooperation, to construct unified theory and vocabulary, and to build bridges with adjacent communities working on cooperation, including in the natural, social, and behavioural sciences.


Developing Future Human-Centered Smart Cities: Critical Analysis of Smart City Security, Interpretability, and Ethical Challenges

arXiv.org Artificial Intelligence

As we make tremendous advances in machine learning and artificial intelligence technosciences, there is a renewed understanding in the AI community that we must ensure that humans being are at the center of our deliberations so that we don't end in technology-induced dystopias. As strongly argued by Green in his book Smart Enough City, the incorporation of technology in city environs does not automatically translate into prosperity, wellbeing, urban livability, or social justice. There is a great need to deliberate on the future of the cities worth living and designing. There are philosophical and ethical questions involved along with various challenges that relate to the security, safety, and interpretability of AI algorithms that will form the technological bedrock of future cities. Several research institutes on human centered AI have been established at top international universities. Globally there are calls for technology to be made more humane and human-compatible. For example, Stuart Russell has a book called Human Compatible AI. The Center for Humane Technology advocates for regulators and technology companies to avoid business models and product features that contribute to social problems such as extremism, polarization, misinformation, and Internet addiction. In this paper, we analyze and explore key challenges including security, robustness, interpretability, and ethical challenges to a successful deployment of AI or ML in human-centric applications, with a particular emphasis on the convergence of these challenges. We provide a detailed review of existing literature on these key challenges and analyze how one of these challenges may lead to others or help in solving other challenges. The paper also advises on the current limitations, pitfalls, and future directions of research in these domains, and how it can fill the current gaps and lead to better solutions.


What is AI? Everything you need to know about Artificial Intelligence

ZDNet

It depends who you ask. Back in the 1950s, the fathers of the field Minsky and McCarthy, described artificial intelligence as any task performed by a program or a machine that, if it had been done by a human, would have to apply intelligence in order to accomplish it. That's obviously a fairly broad definition, which is why you will sometimes see arguments over whether something is truly AI or not. Modern definitions of what it means to create intelligence are slightly more specific. Francois Chollet, AI researcher at Google and creator of the machine-learning software library Keras, has said intelligence is tied to a system's ability to adapt and improvise in a new environment, to generalise its knowledge and apply it to unfamiliar scenarios. "Intelligence is the efficiency with which you acquire new skills at tasks you didn't previously prepare for," he said. "Intelligence is not skill itself, it's not what you can do, it's how well and how efficiently you can learn new things." It's a definition under which modern AI-powered systems, such as virtual assistants, would be characterised as having demonstrated'narrow AI'; the ability to generalise their training when carrying out a limited set of tasks, such as speech recognition or computer vision. Typically, AI systems demonstrate at least some of the following behaviours associated with human intelligence: planning, learning, reasoning, problem solving, knowledge representation, perception, motion, and manipulation and, to a lesser extent, social intelligence and creativity. This ebook, based on the latest ZDNet / TechRepublic special feature, advises CXOs on how to approach AI and ML initiatives, figure out where the data science team fits in, and what algorithms to buy versus build. AI is ubiquitous today, used to recommend what you should buy next online, to understanding what you say to virtual assistants, such as Amazon's Alexa and Apple's Siri, to recognise who and what is in a photo, to spot spam, or detect credit card fraud.


Risk Management Framework for Machine Learning Security

arXiv.org Artificial Intelligence

Adversarial attacks for machine learning models have become a highly studied topic both in academia and industry. These attacks, along with traditional security threats, can compromise confidentiality, integrity, and availability of organization's assets that are dependent on the usage of machine learning models. While it is not easy to predict the types of new attacks that might be developed over time, it is possible to evaluate the risks connected to using machine learning models and design measures that help in minimizing these risks. In this paper, we outline a novel framework to guide the risk management process for organizations reliant on machine learning models. First, we define sets of evaluation factors (EFs) in the data domain, model domain, and security controls domain. We develop a method that takes the asset and task importance, sets the weights of EFs' contribution to confidentiality, integrity, and availability, and based on implementation scores of EFs, it determines the overall security state in the organization. Based on this information, it is possible to identify weak links in the implemented security measures and find out which measures might be missing completely. We believe our framework can help in addressing the security issues related to usage of machine learning models in organizations and guide them in focusing on the adequate security measures to protect their assets.


Transdisciplinary AI Observatory -- Retrospective Analyses and Future-Oriented Contradistinctions

arXiv.org Artificial Intelligence

In the last years, AI safety gained international recognition in the light of heterogeneous safety-critical and ethical issues that risk overshadowing the broad beneficial impacts of AI. In this context, the implementation of AI observatory endeavors represents one key research direction. This paper motivates the need for an inherently transdisciplinary AI observatory approach integrating diverse retrospective and counterfactual views. We delineate aims and limitations while providing hands-on-advice utilizing concrete practical examples. Distinguishing between unintentionally and intentionally triggered AI risks with diverse socio-psycho-technological impacts, we exemplify a retrospective descriptive analysis followed by a retrospective counterfactual risk analysis. Building on these AI observatory tools, we present near-term transdisciplinary guidelines for AI safety. As further contribution, we discuss differentiated and tailored long-term directions through the lens of two disparate modern AI safety paradigms. For simplicity, we refer to these two different paradigms with the terms artificial stupidity (AS) and eternal creativity (EC) respectively. While both AS and EC acknowledge the need for a hybrid cognitive-affective approach to AI safety and overlap with regard to many short-term considerations, they differ fundamentally in the nature of multiple envisaged long-term solution patterns. By compiling relevant underlying contradistinctions, we aim to provide future-oriented incentives for constructive dialectics in practical and theoretical AI safety research.


Deep Learning is Creating a New Cognitive Paradigm

#artificialintelligence

There is a renaissance occurring in the field of artificial intelligence. Many are making against the advancements of Deep Learning. Deep Learning is anyway an amazingly radical departure from classical methods. Old style A.I. procedures has zeroed in generally on the legitimate premise of cognition, Deep Learning by contrast works in the territory of cognitive intuition. Deep learning frameworks display behavior that seems biological despite not being founded on biological material.


Over a Decade of Social Opinion Mining

arXiv.org Artificial Intelligence

Social media popularity and importance is on the increase, due to people using it for various types of social interaction across multiple channels. This social interaction by online users includes submission of feedback, opinions and recommendations about various individuals, entities, topics, and events. This systematic review focuses on the evolving research area of Social Opinion Mining, tasked with the identification of multiple opinion dimensions, such as subjectivity, sentiment polarity, emotion, affect, sarcasm and irony, from user-generated content represented across multiple social media platforms and in various media formats, like text, image, video and audio. Therefore, through Social Opinion Mining, natural language can be understood in terms of the different opinion dimensions, as expressed by humans. This contributes towards the evolution of Artificial Intelligence, which in turn helps the advancement of several real-world use cases, such as customer service and decision making. A thorough systematic review was carried out on Social Opinion Mining research which totals 485 studies and spans a period of twelve years between 2007 and 2018. The in-depth analysis focuses on the social media platforms, techniques, social datasets, language, modality, tools and technologies, natural language processing tasks and other aspects derived from the published studies. Such multi-source information fusion plays a fundamental role in mining of people's social opinions from social media platforms. These can be utilised in many application areas, ranging from marketing, advertising and sales for product/service management, and in multiple domains and industries, such as politics, technology, finance, healthcare, sports and government. Future research directions are presented, whereas further research and development has the potential of leaving a wider academic and societal impact.


Deep Learning for Human Mobility: a Survey on Data and Models

arXiv.org Artificial Intelligence

The study of human mobility is crucial due to its impact on several aspects of our society, such as disease spreading, urban planning, well-being, pollution, and more. The proliferation of digital mobility data, such as phone records, GPS traces, and social media posts, combined with the outstanding predictive power of artificial intelligence, triggered the application of deep learning to human mobility. In particular, the literature is focusing on three tasks: next-location prediction, i.e., predicting an individual's future locations; crowd flow prediction, i.e., forecasting flows on a geographic region; and trajectory generation, i.e., generating realistic individual trajectories. Existing surveys focus on single tasks, data sources, mechanistic or traditional machine learning approaches, while a comprehensive description of deep learning solutions is missing. This survey provides: (i) basic notions on mobility and deep learning; (ii) a review of data sources and public datasets; (iii) a description of deep learning models and (iv) a discussion about relevant open challenges. Our survey is a guide to the leading deep learning solutions to next-location prediction, crowd flow prediction, and trajectory generation. At the same time, it helps deep learning scientists and practitioners understand the fundamental concepts and the open challenges of the study of human mobility.


TimeSHAP: Explaining Recurrent Models through Sequence Perturbations

arXiv.org Artificial Intelligence

Recurrent neural networks are a standard building block in numerous machine learning domains, from natural language processing to time-series classification. While their application has grown ubiquitous, understanding of their inner workings is still lacking. In practice, the complex decision-making in these models is seen as a black-box, creating a tension between accuracy and interpretability. Moreover, the ability to understand the reasoning process of a model is important in order to debug it and, even more so, to build trust in its decisions. Although considerable research effort has been guided towards explaining black-box models in recent years, recurrent models have received relatively little attention. Any method that aims to explain decisions from a sequence of instances should assess, not only feature importance, but also event importance, an ability that is missing from state-of-the-art explainers. In this work, we contribute to filling these gaps by presenting TimeSHAP, a model-agnostic recurrent explainer that leverages KernelSHAP's sound theoretical footing and strong empirical results. As the input sequence may be arbitrarily long, we further propose a pruning method that is shown to dramatically improve its efficiency in practice.