Collaborating Authors


MalBERT: Using Transformers for Cybersecurity and Malicious Software Detection Artificial Intelligence

In recent years we have witnessed an increase in cyber threats and malicious software attacks on different platforms with important consequences to persons and businesses. It has become critical to find automated machine learning techniques to proactively defend against malware. Transformers, a category of attention-based deep learning techniques, have recently shown impressive results in solving different tasks mainly related to the field of Natural Language Processing (NLP). In this paper, we propose the use of a Transformers' architecture to automatically detect malicious software. We propose a model based on BERT (Bidirectional Encoder Representations from Transformers) which performs a static analysis on the source code of Android applications using preprocessed features to characterize existing malware and classify it into different representative malware categories. The obtained results are promising and show the high performance obtained by Transformer-based models for malicious software detection.

Generating Fake Cyber Threat Intelligence Using Transformer-Based Models Artificial Intelligence

Cyber-defense systems are being developed to automatically ingest Cyber Threat Intelligence (CTI) that contains semi-structured data and/or text to populate knowledge graphs. A potential risk is that fake CTI can be generated and spread through Open-Source Intelligence (OSINT) communities or on the Web to effect a data poisoning attack on these systems. Adversaries can use fake CTI examples as training input to subvert cyber defense systems, forcing the model to learn incorrect inputs to serve their malicious needs. In this paper, we automatically generate fake CTI text descriptions using transformers. We show that given an initial prompt sentence, a public language model like GPT-2 with fine-tuning, can generate plausible CTI text with the ability of corrupting cyber-defense systems. We utilize the generated fake CTI text to perform a data poisoning attack on a Cybersecurity Knowledge Graph (CKG) and a cybersecurity corpus. The poisoning attack introduced adverse impacts such as returning incorrect reasoning outputs, representation poisoning, and corruption of other dependent AI-based cyber defense systems. We evaluate with traditional approaches and conduct a human evaluation study with cybersecurity professionals and threat hunters. Based on the study, professional threat hunters were equally likely to consider our fake generated CTI as true.

A Novel Approach for Detection and Ranking of Trendy and Emerging Cyber Threat Events in Twitter Streams Machine Learning

We present a new machine learning and text information extraction approach to detection of cyber threat events in Twitter that are novel (previously non-extant) and developing (marked by significance with respect to similarity with a previously detected event). While some existing approaches to event detection measure novelty and trendiness, typically as independent criteria and occasionally as a holistic measure, this work focuses on detecting both novel and developing events using an unsupervised machine learning approach. Furthermore, our proposed approach enables the ranking of cyber threat events based on an importance score by extracting the tweet terms that are characterized as named entities, keywords, or both. We also impute influence to users in order to assign a weighted score to noun phrases in proportion to user influence and the corresponding event scores for named entities and keywords. To evaluate the performance of our proposed approach, we measure the efficiency and detection error rate for events over a specified time interval, relative to human annotator ground truth.