Goto

Collaborating Authors

Results


Efficacy of Statistical and Artificial Intelligence-based False Information Cyberattack Detection Models for Connected Vehicles

arXiv.org Artificial Intelligence

Connected vehicles (CVs), because of the external connectivity with other CVs and connected infrastructure, are vulnerable to cyberattacks that can instantly compromise the safety of the vehicle itself and other connected vehicles and roadway infrastructure. One such cyberattack is the false information attack, where an external attacker injects inaccurate information into the connected vehicles and eventually can cause catastrophic consequences by compromising safety-critical applications like the forward collision warning. The occurrence and target of such attack events can be very dynamic, making real-time and near-real-time detection challenging. Change point models, can be used for real-time anomaly detection caused by the false information attack. In this paper, we have evaluated three change point-based statistical models; Expectation Maximization, Cumulative Summation, and Bayesian Online Change Point Algorithms for cyberattack detection in the CV data. Also, data-driven artificial intelligence (AI) models, which can be used to detect known and unknown underlying patterns in the dataset, have the potential of detecting a real-time anomaly in the CV data. We have used six AI models to detect false information attacks and compared the performance for detecting the attacks with our developed change point models. Our study shows that change points models performed better in real-time false information attack detection compared to the performance of the AI models. Change point models having the advantage of no training requirements can be a feasible and computationally efficient alternative to AI models for false information attack detection in connected vehicles.


MTH-IDS: A Multi-Tiered Hybrid Intrusion Detection System for Internet of Vehicles

arXiv.org Artificial Intelligence

Modern vehicles, including connected vehicles and autonomous vehicles, nowadays involve many electronic control units connected through intra-vehicle networks to implement various functionalities and perform actions. Modern vehicles are also connected to external networks through vehicle-to-everything technologies, enabling their communications with other vehicles, infrastructures, and smart devices. However, the improving functionality and connectivity of modern vehicles also increase their vulnerabilities to cyber-attacks targeting both intra-vehicle and external networks due to the large attack surfaces. To secure vehicular networks, many researchers have focused on developing intrusion detection systems (IDSs) that capitalize on machine learning methods to detect malicious cyber-attacks. In this paper, the vulnerabilities of intra-vehicle and external networks are discussed, and a multi-tiered hybrid IDS that incorporates a signature-based IDS and an anomaly-based IDS is proposed to detect both known and unknown attacks on vehicular networks. Experimental results illustrate that the proposed system can detect various types of known attacks with 99.99% accuracy on the CAN-intrusion-dataset representing the intra-vehicle network data and 99.88% accuracy on the CICIDS2017 dataset illustrating the external vehicular network data. For the zero-day attack detection, the proposed system achieves high F1-scores of 0.963 and 0.800 on the above two datasets, respectively. The average processing time of each data packet on a vehicle-level machine is less than 0.6 ms, which shows the feasibility of implementing the proposed system in real-time vehicle systems. This emphasizes the effectiveness and efficiency of the proposed IDS.


Generating Fake Cyber Threat Intelligence Using Transformer-Based Models

arXiv.org Artificial Intelligence

Cyber-defense systems are being developed to automatically ingest Cyber Threat Intelligence (CTI) that contains semi-structured data and/or text to populate knowledge graphs. A potential risk is that fake CTI can be generated and spread through Open-Source Intelligence (OSINT) communities or on the Web to effect a data poisoning attack on these systems. Adversaries can use fake CTI examples as training input to subvert cyber defense systems, forcing the model to learn incorrect inputs to serve their malicious needs. In this paper, we automatically generate fake CTI text descriptions using transformers. We show that given an initial prompt sentence, a public language model like GPT-2 with fine-tuning, can generate plausible CTI text with the ability of corrupting cyber-defense systems. We utilize the generated fake CTI text to perform a data poisoning attack on a Cybersecurity Knowledge Graph (CKG) and a cybersecurity corpus. The poisoning attack introduced adverse impacts such as returning incorrect reasoning outputs, representation poisoning, and corruption of other dependent AI-based cyber defense systems. We evaluate with traditional approaches and conduct a human evaluation study with cybersecurity professionals and threat hunters. Based on the study, professional threat hunters were equally likely to consider our fake generated CTI as true.