Goto

Collaborating Authors

Results


What is Neural Network Libraries container available in NVIDIA GPU Cloud - World-class cloud from India

#artificialintelligence

With the applications of artificial intelligence and deep learning (DL) on the rise, organisations seek easy and faster solutions to the problems presented by AI and deep learning. The challenge has always been about how to imitate the human brain and be able to deploy its logic artificially. Result: Neural Networks that are essentially designed on the human brain wiring. Neural Networks can be described as a set of algorithms that are loosely modelled on human brain. They are designed to recognise patterns.


Top 108 Computer Vision startups

#artificialintelligence

Computer vision is an interdisciplinary field that deals with how computers can be made for gaining high-level understanding from digital images or videos. From the perspective of engineering, it seeks to automate tasks that the human visual system can do. Country: China Funding: $1.6B SenseTime develops face recognition technology that can be applied to payment and picture analysis, which could be used, for instance, on bank card verification and security systems. Country: China Funding: $607M Megvii develops Face Cognitive Services - a platform offering computer vision technologies that enable your applications to read and understand the world better. Face allows you to easily add leading, deep learning-based image analysis recognition technologies into your applications, with simple and powerful APIs and SDKs.


Neural Natural Language Generation: A Survey on Multilinguality, Multimodality, Controllability and Learning

Journal of Artificial Intelligence Research

Developing artificial learning systems that can understand and generate natural language has been one of the long-standing goals of artificial intelligence. Recent decades have witnessed an impressive progress on both of these problems, giving rise to a new family of approaches. Especially, the advances in deep learning over the past couple of years have led to neural approaches to natural language generation (NLG). These methods combine generative language learning techniques with neural-networks based frameworks. With a wide range of applications in natural language processing, neural NLG (NNLG) is a new and fast growing field of research. In this state-of-the-art report, we investigate the recent developments and applications of NNLG in its full extent from a multidimensional view, covering critical perspectives such as multimodality, multilinguality, controllability and learning strategies. We summarize the fundamental building blocks of NNLG approaches from these aspects and provide detailed reviews of commonly used preprocessing steps and basic neural architectures. This report also focuses on the seminal applications of these NNLG models such as machine translation, description generation, automatic speech recognition, abstractive summarization, text simplification, question answering and generation, and dialogue generation. Finally, we conclude with a thorough discussion of the described frameworks by pointing out some open research directions.


An Interview with Nvidia CEO Jensen Huang about Manufacturing Intelligence

#artificialintelligence

It took a few moments to realize what was striking about the opening video for Nvidia's GTC conference: the complete absence of humans. That the video ended with Jensen Huang, the founder and CEO of Nvidia, is the exception that accentuates the takeaway. On the one hand, the theme of Huang's keynote was the idea of AI creating AI via machine learning; he called the idea "intelligence manufacting": None of these capabilities were remotely possible a decade ago. Accelerated computing, at data center scale, and combined with machine learning, has sped up computing by a million-x. Accelerated computing has enabled revolutionary AI models like the transformer, and made self-supervised learning possible. AI has fundamentally changed what software can make, and how you make software. Companies are processing and refining their data, making AI software, becoming intelligence manufacturers. Their data centers are becoming AI factories. The first wave of AI learned perception and inference, like recognizing images, understanding speech, recommending a video, or an item to buy. The next wave of AI is robotics: AI planning actions. Digital robots, avatars, and physical robots will perceive, plan, and act, and just as AI frameworks like TensorFlow and PyTorch have become integral to AI software, Omniverse will be essential to making robotics software. Omniverse will enable the next wave of AI. We will talk about the next million-x, and other dynamics shaping our industry, this GTC. Over the past decade, Nvidia-accelerated computing delivered a million-x speed-up in AI, and started the modern AI revolution. Now AI will revolutionize all industries. The CUDA libraries, the Nvidia SDKs, are at the heart of accelerated computing. With each new SDK, new science, new applications, and new industries can tap into the power of Nvidia computing.


State of AI Ethics Report (Volume 6, February 2022)

arXiv.org Artificial Intelligence

This report from the Montreal AI Ethics Institute (MAIEI) covers the most salient progress in research and reporting over the second half of 2021 in the field of AI ethics. Particular emphasis is placed on an "Analysis of the AI Ecosystem", "Privacy", "Bias", "Social Media and Problematic Information", "AI Design and Governance", "Laws and Regulations", "Trends", and other areas covered in the "Outside the Boxes" section. The two AI spotlights feature application pieces on "Constructing and Deconstructing Gender with AI-Generated Art" as well as "Will an Artificial Intellichef be Cooking Your Next Meal at a Michelin Star Restaurant?". Given MAIEI's mission to democratize AI, submissions from external collaborators have featured, such as pieces on the "Challenges of AI Development in Vietnam: Funding, Talent and Ethics" and using "Representation and Imagination for Preventing AI Harms". The report is a comprehensive overview of what the key issues in the field of AI ethics were in 2021, what trends are emergent, what gaps exist, and a peek into what to expect from the field of AI ethics in 2022. It is a resource for researchers and practitioners alike in the field to set their research and development agendas to make contributions to the field of AI ethics.


DeepSensor: Deep Learning Testing Framework Based on Neuron Sensitivity

arXiv.org Artificial Intelligence

Despite impressive capabilities and outstanding performance, deep neural network(DNN) has captured increasing public concern for its security problem, due to frequent occurrence of erroneous behaviors. Therefore, it is necessary to conduct systematically testing before its deployment to real-world applications. Existing testing methods have provided fine-grained criteria based on neuron coverage and reached high exploratory degree of testing. But there is still a gap between the neuron coverage and model's robustness evaluation. To bridge the gap, we observed that neurons which change the activation value dramatically due to minor perturbation are prone to trigger incorrect corner cases. Motivated by it, we propose neuron sensitivity and develop a novel white-box testing framework for DNN, donated as DeepSensor. The number of sensitive neurons is maximized by particle swarm optimization, thus diverse corner cases could be triggered and neuron coverage be further improved when compared with baselines. Besides, considerable robustness enhancement can be reached when adopting testing examples based on neuron sensitivity for retraining. Extensive experiments implemented on scalable datasets and models can well demonstrate the testing effectiveness and robustness improvement of DeepSensor.


IoT Malware Detection Architecture using a Novel Channel Boosted and Squeezed CNN

arXiv.org Artificial Intelligence

Interaction between devices, people, and the Internet has given birth to a new digital communication model, the Internet of Things (IoT). The seamless network of these smart devices is the core of this IoT model. However, on the other hand, integrating smart devices to constitute a network introduces many security challenges. These connected devices have created a security blind spot, where cybercriminals can easily launch an attack to compromise the devices using malware proliferation techniques. Therefore, malware detection is considered a lifeline for the survival of IoT devices against cyberattacks. This study proposes a novel IoT Malware Detection Architecture (iMDA) using squeezing and boosting dilated convolutional neural network (CNN). The proposed architecture exploits the concepts of edge and smoothing, multi-path dilated convolutional operations, channel squeezing, and boosting in CNN. Edge and smoothing operations are employed with split-transform-merge (STM) blocks to extract local structure and minor contrast variation in the malware images. STM blocks performed multi-path dilated convolutional operations, which helped recognize the global structure of malware patterns. Additionally, channel squeezing and merging helped to get the prominent reduced and diverse feature maps, respectively. Channel squeezing and boosting are applied with the help of STM block at the initial, middle and final levels to capture the texture variation along with the depth for the sake of malware pattern hunting. The proposed architecture has shown substantial performance compared with the customized CNN models. The proposed iMDA has achieved Accuracy: 97.93%, F1-Score: 0.9394, Precision: 0.9864, MCC: 0. 8796, Recall: 0.8873, AUC-PR: 0.9689 and AUC-ROC: 0.9938.


Conversational Agents: Theory and Applications

arXiv.org Artificial Intelligence

In this chapter, we provide a review of conversational agents (CAs), discussing chatbots, intended for casual conversation with a user, as well as task-oriented agents that generally engage in discussions intended to reach one or several specific goals, often (but not always) within a specific domain. We also consider the concept of embodied conversational agents, briefly reviewing aspects such as character animation and speech processing. The many different approaches for representing dialogue in CAs are discussed in some detail, along with methods for evaluating such agents, emphasizing the important topics of accountability and interpretability. A brief historical overview is given, followed by an extensive overview of various applications, especially in the fields of health and education. We end the chapter by discussing benefits and potential risks regarding the societal impact of current and future CA technology.


Reinforcement learning for multi-item retrieval in the puzzle-based storage system

arXiv.org Artificial Intelligence

Nowadays, fast delivery services have created the need for high-density warehouses. The puzzle-based storage system is a practical way to enhance the storage density, however, facing difficulties in the retrieval process. In this work, a deep reinforcement learning algorithm, specifically the Double&Dueling Deep Q Network, is developed to solve the multi-item retrieval problem in the system with general settings, where multiple desired items, escorts, and I/O points are placed randomly. Additionally, we propose a general compact integer programming model to evaluate the solution quality. Extensive numerical experiments demonstrate that the reinforcement learning approach can yield high-quality solutions and outperforms three related state-of-the-art heuristic algorithms. Furthermore, a conversion algorithm and a decomposition framework are proposed to handle simultaneous movement and large-scale instances respectively, thus improving the applicability of the PBS system.


Reinforcement Learning-Empowered Mobile Edge Computing for 6G Edge Intelligence

arXiv.org Artificial Intelligence

Mobile edge computing (MEC) is considered a novel paradigm for computation-intensive and delay-sensitive tasks in fifth generation (5G) networks and beyond. However, its uncertainty, referred to as dynamic and randomness, from the mobile device, wireless channel, and edge network sides, results in high-dimensional, nonconvex, nonlinear, and NP-hard optimization problems. Thanks to the evolved reinforcement learning (RL), upon iteratively interacting with the dynamic and random environment, its trained agent can intelligently obtain the optimal policy in MEC. Furthermore, its evolved versions, such as deep RL (DRL), can achieve higher convergence speed efficiency and learning accuracy based on the parametric approximation for the large-scale state-action space. This paper provides a comprehensive research review on RL-enabled MEC and offers insight for development in this area. More importantly, associated with free mobility, dynamic channels, and distributed services, the MEC challenges that can be solved by different kinds of RL algorithms are identified, followed by how they can be solved by RL solutions in diverse mobile applications. Finally, the open challenges are discussed to provide helpful guidance for future research in RL training and learning MEC.