Collaborating Authors


Deep learning-based prediction of piled-up status and payload distribution of bulk material


The piled-up status of bulk material in a haul truck body determines the load balance, hence affects the mining operations’ efficiency. Prediction of Piled-up Status and Payload Distribution (PSPD) of bulk material contributes to providing optimal dumping positions to improve the vehicle’s stress state and service life. This work introduces a novel deep learning-based PSPD prediction method from images. A two-stage prediction-regression CNN model is designed to automatically extract image features to obtain the PSPD of the current state. The PSPD prediction is accomplished via a backward-propagation neural network (BPNN).