Goto

Collaborating Authors

Deep Learning


Polanyi's Revenge and AI's New Romance with Tacit Knowledge

Communications of the ACM

In his 2019 Turing Award Lecture, Geoff Hinton talks about two approaches to make computers intelligent. One he dubs--tongue firmly in cheek--"Intelligent Design" (or giving task-specific knowledge to the computers) and the other, his favored one, "Learning" where we only provide examples to the computers and let them learn. Hinton's not-so-subtle message is that the "deep learning revolution" shows the only true way is the second. Hinton is of course reinforcing the AI Zeitgeist, if only in a doctrinal form. Artificial intelligence technology has captured popular imagination of late, thanks in large part to the impressive feats in perceptual intelligence--including learning to recognize images, voice, and rudimentary language--and bringing fruits of those advances to everyone via their smartphones and personal digital accessories.


Deploy Deep Learning Models Using Streamlit and Heroku

#artificialintelligence

Deep Learning and Machine Learning models trained by many data professionals either end up in an inference.ipynb Those meticulous model architectures capable of creating awe in the real world never see the light of the day. Those models just sit there in the background processing requests via an API gateway doing their job silently and making the system more intelligent. People using those intelligent systems don't always credit the Data Professionals who spent hours or weeks or months collecting data, cleaning the collected data, formatting the data to use it correctly, writing the model architecture, training that model architecture and validating it. And if the validation metrics are not very good, again going back to square one and repeating the cycle.


Flutter Artificial Intelligence Course - Build 15+ AI Apps

#artificialintelligence

We will develop 15 AI Apps with Flutter using TensorFlow Machine Learning and Deep Learning Concepts. In this course you will also learn how to train a model/machine for your apps. And how to import and use these trained models after training in your flutter app (android iOS app). This is a complete step by step course. At the end of this course you will be able to make your own Ai, Deep Learning and Machine Learning Apps for the Android Smart Phones and iOS [iPhones] using Flutter SDK with TensorFlow Lite.


AI And Creativity: Why OpenAI's Latest Model Matters

#artificialintelligence

When prompted to generate "a mural of a blue pumpkin on the side of a building," OpenAI's new deep ... [ ] learning model DALL-E produces this series of original images. OpenAI has done it again. Earlier this month, OpenAI--the research organization behind last summer's much-hyped language model GPT-3--released a new AI model named DALL-E. While it has generated less buzz than GPT-3 did, DALL-E has even more profound implications for the future of AI. In a nutshell, DALL-E takes text captions as input and produces original images as output. For instance, when fed phrases as diverse as "a pentagonal green clock," "a sphere made of fire" or "a mural of a blue pumpkin on the side of a building," DALL-E is able to generate shockingly accurate visual renderings.


An intro to the fast-paced world of artificial intelligence

#artificialintelligence

The field of artificial intelligence is moving at a staggering clip, with breakthroughs emerging in labs across MIT. Through the Undergraduate Research Opportunities Program (UROP), undergraduates get to join in. In two years, the MIT Quest for Intelligence has placed 329 students in research projects aimed at pushing the frontiers of computing and artificial intelligence, and using these tools to revolutionize how we study the brain, diagnose and treat disease, and search for new materials with mind-boggling properties. Rafael Gomez-Bombarelli, an assistant professor in the MIT Department of Materials Science and Engineering, has enlisted several Quest-funded undergraduates in his mission to discover new molecules and materials with the help of AI. "They bring a blue-sky open mind and a lot of energy," he says. "Through the Quest, we had the chance to connect with students from other majors who probably wouldn't have thought to reach out."


Why AI Can't Properly Translate Proust--Yet

Oxford Comp Sci

This observation--that to understand Proust's text requires knowledge of various kinds--is not a new one. We came across it before, in the context of the Cyc project. Remember that Cyc was supposed to be given knowledge corresponding to the whole of consensus reality, and the Cyc hypothesis was that this would yield human-level general intelligence. Researchers in knowledge-based AI would be keen for me to point out to you that, decades ago, they anticipated exactly this issue. But it is not obvious that just continuing to refine deep learning techniques will address this problem.


How to train a robot (using AI and supercomputers)

ScienceDaily > Artificial Intelligence

To navigate built environments, robots must be able to sense and make decisions about how to interact with their locale. Researchers at the company were interested in using machine and deep learning to train their robots to learn about objects, but doing so requires a large dataset of images. While there are millions of photos and videos of rooms, none were shot from the vantage point of a robotic vacuum. Efforts to train using images with human-centric perspectives failed. Beksi's research focuses on robotics, computer vision, and cyber-physical systems.


Artificial Intelligence Discovers Potent Antibiotic

#artificialintelligence

Anewly designed artificial intelligence tool based on the structure of the brain has identified a molecule capable of wiping out a number of antibiotic-resistant strains of bacteria, according to a study published on February 20 in Cell. The molecule, halicin, which had previously been investigated as a potential treatment for diabetes, demonstrated activity against Mycobacterium tuberculosis, the causative agent of tuberculosis, and several other hard-to-treat microbes. The discovery comes at a time when novel antibiotics are becoming increasingly difficult to find, reports STAT, and when drug-resistant bacteria are a growing global threat. The Interagency Coordination Group (IACG) on Antimicrobial Resistance convened by United Nations a few years ago released a report in 2019 estimating that drug-resistant diseases could result in 10 million deaths per year by 2050. Despite the urgency in the search for new antibiotics, a lack of financial incentives has caused pharmaceutical companies to scale back their research, according to STAT. "I do think this platform will very directly reduce the cost involved in the discovery phase of antibiotic development," coauthor James Collins of MIT tells STAT.


Top 6 Deep Learning Models You Should Master for Killer AI Applications

#artificialintelligence

The field of deep learning has gained popularity with the rise of available processing power, storage space, and big data. Instead of using traditional machine learning models, AI engineers have been gradually switching to deep learning models. Where there is abundant data, deep learning models almost always outperform traditional machine learning models. Therefore, as we collect more data at every passing year, it makes sense to use deep learning models. Furthermore, the field of deep learning is also growing fast.


'AI algorithm can predict Alzheimer's disease in 1 minute'

#artificialintelligence

A study by Vuno, a Korean artificial intelligence (AI) developer, showed that a deep learning algorithm could predict Alzheimer's disease (AD) within one minute. Jointly with Asan Medical Center, Vuno verified an AI algorithm using MRI scans of 2,727 patients registered at domestic medical institutions. Vuno found that the algorithm predicted AD and mild cognitive impairment (MCI) accurately. Vuno's deep learning-based algorithm used an area under the curve (AUC) to predict dementia. The closer the AUC value is, the higher the algorithm's performance is.