Goto

Collaborating Authors

Deep Learning


La veille de la cybersécurité

#artificialintelligence

Human-level artificial intelligence is close to finally being achieved, according to a lead researcher at Google's DeepMind AI division. Dr Nando de Freitas said "the game is over" in the decades-long quest to realise artificial general intelligence (AGI) after DeepMind unveiled an AI system capable of completing a wide range of complex tasks, from stacking blocks to writing poetry.


How to Detect Emotions in Images using Python

#artificialintelligence

One of the easiest, and yet also the most effective, ways of analyzing how people feel is looking at their facial expressions. Most of the time, our face best describes how we feel in a particular moment. This means that emotion recognition is a simple multiclass classification problem. We need to analyze a person's face and put it in a particular class, where each class represents a particular emotion. In Python, we can use the DeepFace and FER libraries to detect emotions in images.


6 Artificial Intelligence Frameworks to Learn

#artificialintelligence

By using this framework, anyone can build neural networks with graphs. This also depicts operations as nodes. PyTorch is one of the most important frameworks in artificial intelligence. However, it is super adaptable in terms of integrations and languages. It was released by Facebook's AI research lab. This also acts as an open source library useful in deep learning, computer vision and natural language processing software. Another feature is its greater affinity with iOS as well as Android etc. It uses debugging tools like IPDB and PDB.


Advanced Reinforcement Learning: policy gradient methods

#artificialintelligence

Sample efficiency for policy gradient methods is pretty poor. We throw out each batch of data immediately after just one gradient step. This is the most complete Reinforcement Learning course series on Udemy. In it, you will learn to implement some of the most powerful Deep Reinforcement Learning algorithms in Python using PyTorch and PyTorch lightning. You will implement from scratch adaptive algorithms that solve control tasks based on experience.


Deep Learning with PyTorch

#artificialintelligence

Deep Learning with PyTorch teaches you to create neural networks and deep learning systems with PyTorch. This program is specially designed for people who want to start using PyTorch for building AI, Machine Learning, or Deep Learning models and applications. This program will help you learn how PyTorch can be used for developing deep learning models. You'll learn the PyTorch concepts like Tensors, Autograd, and Automatic differentiation packages. Also, this program will give you a brief about deep learning concepts.


Traditional vs Deep Learning Algorithms in the Telecom Industry -- Cloud Architecture and Algorithm Categorization

#artificialintelligence

The unprecedented growth of mobile devices, applications and services have placed the utmost demand on mobile and wireless networking infrastructure. Rapid research and development of 5G systems have found ways to support mobile traffic volumes, real-time extraction of fine-grained analytics, and agile management of network resources, so as to maximize user experience. Moreover inference from heterogeneous mobile data from distributed devices experiences challenges due to computational and battery power limitations. ML models employed at the edge-servers are constrained to light-weight to boost model performance by achieving a trade-off between model complexity and accuracy. Also, model compression, pruning, and quantization are largely in place.


Natural Language Processing in TensorFlow

#artificialintelligence

If you are a software developer who wants to build scalable AI-powered algorithms, you need to understand how to use the tools to build them. This Specialization will teach you best practices for using TensorFlow, a popular open-source framework for machine learning. In Course 3 of the deeplearning.ai TensorFlow Specialization, you will build natural language processing systems using TensorFlow. You will learn to process text, including tokenizing and representing sentences as vectors, so that they can be input to a neural network.


SoundWatch

Communications of the ACM

We present SoundWatch, a smartwatch-based deep learning application to sense, classify, and provide feedback about sounds occurring in the environment.


A Deeper Understanding of Deep Learning

Communications of the ACM

Deep learning should not work as well as it seems to: according to traditional statistics and machine learning, any analysis that has too many adjustable parameters will overfit noisy training data, and then fail when faced with novel test data. In clear violation of this principle, modern neural networks often use vastly more parameters than data points, but they nonetheless generalize to new data quite well. The shaky theoretical basis for generalization has been noted for many years. One proposal was that neural networks implicitly perform some sort of regularization--a statistical tool that penalizes the use of extra parameters. Yet efforts to formally characterize such an "implicit bias" toward smoother solutions have failed, said Roi Livni, an advanced lecturer in the department of electrical engineering of Israel's Tel Aviv University.


100+ Data Science And Machine Learning Cheat Sheets (With PDF)

#artificialintelligence

Today, We'll look after something very big that you might have never seen or rarely seen on the web. We have researched for more than 35 days to find out all the cheatsheets on machine learning, deep learning, data mining, neural networks, big data, artificial intelligence, python, tensorflow, scikit-learn, etc from all over the web. To make it easy for all learners, We have zipped over 100 machine learning cheat sheet, data science cheat sheet, artificial intelligence cheat sheets and more in one article. You can also download the pdf version of this cheat sheets (links are already provided below every image). Note: The list is long.