Goto

Collaborating Authors

Results


Smart Mobility Ontology: Current Trends and Future Directions

arXiv.org Artificial Intelligence

Ontology, as a discipline of philosophy, explains the nature of existence and has its roots in Aristotle and Plato studies on "metaphysics" (Welty and Guarino, 2001). However, the word ontology originated from two Greek words: ontos (being) and logos (word), and conceived for the first time during the Sixteen century by German philosophers (Welty and Guarino, 2001). From then till the mid-twentieth, ontology evolved mainly as a branch of philosophy. However, with the advent of Artificial Intelligence since the 1950s, researchers perceived the necessity of ontology to describe a new world of intelligent systems (Welty and Guarino, 2001). Moreover, with the development of the World Wide Web in the 1990s, ontology development got to be common among different domain specialists to define and share the concepts and entities in their fields on the Internet (Noy et al., 2001). During the last three decades, ontology development studies have evolved and shifted from theoretical issues of ontology to practical implications of the use of ontology in real-world, large-scale applications (Noy et al., 2001). Nowadays, ontology development focuses mainly on defining machine interpretable concepts and their relationships in a domain. However, ontology development also pursues other goals, such as providing a common conceptualization of the domain on which different experts agree, (Métral and Cutting-Decelle, 2011) and enable them to reuse the domain knowledge (Noy et al., 2001). It also enables researchers to easily analyze the domain knowledge and eloquently express the domain assumptions.


Deep Reinforcement Learning and Transportation Research: A Comprehensive Review

arXiv.org Artificial Intelligence

Deep reinforcement learning (DRL) is an emerging methodology that is transforming the way many complicated transportation decision-making problems are tackled. Researchers have been increasingly turning to this powerful learning-based methodology to solve challenging problems across transportation fields. While many promising applications have been reported in the literature, there remains a lack of comprehensive synthesis of the many DRL algorithms and their uses and adaptations. The objective of this paper is to fill this gap by conducting a comprehensive, synthesized review of DRL applications in transportation. We start by offering an overview of the DRL mathematical background, popular and promising DRL algorithms, and some highly effective DRL extensions. Building on this overview, a systematic investigation of about 150 DRL studies that have appeared in the transportation literature, divided into seven different categories, is performed. Building on this review, we continue to examine the applicability, strengths, shortcomings, and common and application-specific issues of DRL techniques with regard to their applications in transportation. In the end, we recommend directions for future research and present available resources for actually implementing DRL.


Knowledge Adaption for Demand Prediction based on Multi-task Memory Neural Network

arXiv.org Artificial Intelligence

Accurate demand forecasting of different public transport modes(e.g., buses and light rails) is essential for public service operation.However, the development level of various modes often varies sig-nificantly, which makes it hard to predict the demand of the modeswith insufficient knowledge and sparse station distribution (i.e.,station-sparse mode). Intuitively, different public transit modes mayexhibit shared demand patterns temporally and spatially in a city.As such, we propose to enhance the demand prediction of station-sparse modes with the data from station-intensive mode and designaMemory-Augmented Multi-taskRecurrent Network (MATURE)to derive the transferable demand patterns from each mode andboost the prediction of station-sparse modes through adaptingthe relevant patterns from the station-intensive mode. Specifically,MATUREcomprises three components: 1) a memory-augmentedrecurrent network for strengthening the ability to capture the long-short term information and storing temporal knowledge of eachtransit mode; 2) a knowledge adaption module to adapt the rele-vant knowledge from a station-intensive source to station-sparsesources; 3) a multi-task learning framework to incorporate all theinformation and forecast the demand of multiple modes jointly.The experimental results on a real-world dataset covering four pub-lic transport modes demonstrate that our model can promote thedemand forecasting performance for the station-sparse modes.


TRIPDECODER: Study Travel Time Attributes and Route Preferences of Metro Systems from Smart Card Data

arXiv.org Machine Learning

In this paper, we target at recovering the exact routes taken by commuters inside a metro system that arenot captured by an Automated Fare Collection (AFC) system and hence remain unknown. We strategicallypropose two inference tasks to handle the recovering, one to infer the travel time of each travel link thatcontributes to the total duration of any trip inside a metro network and the other to infer the route preferencesbased on historical trip records and the travel time of each travel link inferred in the previous inferencetask. As these two inference tasks have interrelationship, most of existing works perform these two taskssimultaneously. However, our solutionTripDecoderadopts a totally different approach. To the best of ourknowledge,TripDecoderis the first model that points out and fully utilizes the fact that there are some tripsinside a metro system with only one practical route available. It strategically decouples these two inferencetasks by only taking those trip records with only one practical route as the input for the first inference taskof travel time and feeding the inferred travel time to the second inference task as an additional input whichnot only improves the accuracy but also effectively reduces the complexity of both inference tasks. Twocase studies have been performed based on the city-scale real trip records captured by the AFC systems inSingapore and Taipei to compare the accuracy and efficiency ofTripDecoderand its competitors. As expected,TripDecoderhas achieved the best accuracy in both datasets, and it also demonstrates its superior efficiencyand scalability.


Tomography of the London Underground: a Scalable Model for Origin-Destination Data

Neural Information Processing Systems

The paper addresses the classical network tomography problem of inferring local traffic given origin-destination observations. Focussing on large complex public transportation systems, we build a scalable model that exploits input-output information to estimate the unobserved link/station loads and the users path preferences. Based on the reconstruction of the users' travel time distribution, the model is flexible enough to capture possible different path-choice strategies and correlations between users travelling on similar paths at similar times. The corresponding likelihood function is intractable for medium or large-scale networks and we propose two distinct strategies, namely the exact maximum-likelihood inference of an approximate but tractable model and the variational inference of the original intractable model. As an application of our approach, we consider the emblematic case of the London Underground network, where a tap-in/tap-out system tracks the start/exit time and location of all journeys in a day.


Towards a Framework for Certification of Reliable Autonomous Systems

arXiv.org Artificial Intelligence

The capability and spread of such systems have reached the point where they are beginning to touch much of everyday life. However, regulators grapple with how to deal with autonomous systems, for example how could we certify an Unmanned Aerial System for autonomous use in civilian airspace? We here analyse what is needed in order to provide verified reliable behaviour of an autonomous system, analyse what can be done as the state-of-the-art in automated verification, and propose a roadmap towards developing regulatory guidelines, including articulating challenges to researchers, to engineers, and to regulators. Case studies in seven distinct domains illustrate the article. Keywords: autonomous systems; certification; verification; Artificial Intelligence 1 Introduction Since the dawn of human history, humans have designed, implemented and adopted tools to make it easier to perform tasks, often improving efficiency, safety, or security.


Within 10 Years, We'll Travel by Hyperloop, Rockets, and Avatars

#artificialintelligence

Try Hyperloop, rocket travel, and robotic avatars. Hyperloop is currently working towards 670 mph (1080 kph) passenger pods, capable of zipping us from Los Angeles to downtown Las Vegas in under 30 minutes. Rocket Travel (think SpaceX's Starship) promises to deliver you almost anywhere on the planet in under an hour. Think New York to Shanghai in 39 minutes. As 5G connectivity, hyper-realistic virtual reality, and next-gen robotics continue their exponential progress, the emergence of "robotic avatars" will all but nullify the concept of distance, replacing human travel with immediate remote telepresence.


The Future of Transportation

#artificialintelligence

Sengupta: Thank you so much for having me today. I'm really excited to be in San Francisco. I don't get to come here that often, which is strange because I live in Los Angeles, but I do like to come whenever I can. For my talk today, I'm going to talk about the future of transportation, specifically on the things that I worked on that I think are kind of the up and coming thing, the thing that I'm working on now and what's going to happen in the future. I think part of my career has always been about just doing fun and exciting new things and all my degrees are in aerospace engineering, ever since I was a little kid, I loved science fiction. I actually am a Star Trek person versus a Star Wars person, but I knew since I was a little kid that I wanted to be involved in the space program, so that's why I decided to go the aerospace engineering route and I wanted to build technology. I got my Ph.D. in plasma propulsion systems. Has anyone heard of the mission called Dawn that's out in the main asteroid belt? My Ph.D. research actually was developing the ion engine technology for that mission. It actually flew and got it to a pretty cool place out in the main asteroid belt looking at Vesta and Ceres. I did that for about five years and then I kind of felt like I had done everything I could possibly do on that front, from a research perspective. My management asked me if I wanted to work on the next mission to Mars. There's very few engineers in the space program who'd be like, "No, I'm just not interested in that." And they're like, "We want you to do the supersonic parachute for it."


Trans-Sense: Real Time Transportation Schedule Estimation Using Smart Phones

arXiv.org Machine Learning

Developing countries suffer from traffic congestion, poorly planned road/rail networks, and lack of access to public transportation facilities. This context results in an increase in fuel consumption, pollution level, monetary losses, massive delays, and less productivity. On the other hand, it has a negative impact on the commuters feelings and moods. Availability of real-time transit information - by providing public transportation vehicles locations using GPS devices - helps in estimating a passenger's waiting time and addressing the above issues. However, such solution is expensive for developing countries. This paper aims at designing and implementing a crowd-sourced mobile phones-based solution to estimate the expected waiting time of a passenger in public transit systems, the prediction of the remaining time to get on/off a vehicle, and to construct a real time public transit schedule. Trans-Sense has been evaluated using real data collected for over 800 hours, on a daily basis, by different Android phones, and using different light rail transit lines at different time spans. The results show that Trans-Sense can achieve an average recall and precision of 95.35% and 90.1%, respectively, in discriminating lightrail stations. Moreover, the empirical distributions governing the different time delays affecting a passenger's total trip time enable predicting the right time of arrival of a passenger to her destination with an accuracy of 91.81%.In addition, the system estimates the stations dimensions with an accuracy of 95.71%.


Tackling Climate Change with Machine Learning

arXiv.org Artificial Intelligence

Climate change is one of the greatest challenges facing humanity, and we, as machine learning experts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by machine learning, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the machine learning community to join the global effort against climate change.