Goto

Collaborating Authors

Results


Python: Machine Learning, Deep Learning, Pandas, Matplotlib

#artificialintelligence

Fundamental stuff of Python and its library Numpy What is the AI, Machine Learning and Deep Learning History of Machine Learning, Data Analysis with Pandas Turing Machine and Turing Test The Logic of Machine Learning such as Machine Learning models and algorithms, Gathering data, Data pre-processing, Training and testing the model etc. What is Artificial Neural Network (ANN) Tensor Operations in Python Python instructors on Udemy specialize in everything from software development to data analysis, and are known for their effective Machine learning isn't just useful for predictive texting or smartphone voice recognition. Tensorflow, Python tensorflow Convolutional Neural Network Recurrent Neural Network and LTSM Python instructors on Udemy specialize in everything from software development to data analysis, and are known for their effective, friendly Machine Learning, Python machine learning a-z Deep Learning, python machine learning a-z Machine Learning with Python Deep Learning with Python Machine learning is constantly being applied to new industries and new problems. Whether you're a marketer, video game designer, or programmer, I am here to hel What is data science? We have more data than ever before. But data alone cannot tell us much about the world around us. What does a data scientist do? Data Scientists use machine learning to discover hidden patterns in large amounts of raw data to shed light on real problems. What are the most popular coding languages for data science? Python is the most popular programming language for data science. It is a universal language How do I learn Python on my own?


Python: Machine Learning, Deep Learning, Pandas, Matplotlib

#artificialintelligence

Fundamental stuff of Python and its library Numpy What is the AI, Machine Learning and Deep Learning History of Machine Learning, Data Analysis with Pandas Turing Machine and Turing Test The Logic of Machine Learning such as Machine Learning models and algorithms, Gathering data, Data pre-processing, Training and testing the model etc. What is Artificial Neural Network (ANN) Tensor Operations in Python Python instructors on Udemy specialize in everything from software development to data analysis, and are known for their effective Machine learning isn't just useful for predictive texting or smartphone voice recognition. Tensorflow, Python tensorflow Convolutional Neural Network Recurrent Neural Network and LTSM Python instructors on Udemy specialize in everything from software development to data analysis, and are known for their effective, friendly Machine Learning, Python machine learning a-z Deep Learning, python machine learning a-z Machine Learning with Python Deep Learning with Python Machine learning is constantly being applied to new industries and new problems. Whether you're a marketer, video game designer, or programmer, I am here to hel What is data science? We have more data than ever before. But data alone cannot tell us much about the world around us. What does a data scientist do? Data Scientists use machine learning to discover hidden patterns in large amounts of raw data to shed light on real problems. What are the most popular coding languages for data science? Python is the most popular programming language for data science. It is a universal language How do I learn Python on my own?


Python : Machine Learning, Deep Learning, Pandas, Matplotlib

#artificialintelligence

Python instructors on Udemy specialize in everything from software development to data analysis, and are known for their effective, friendly instruction for students of all levels. Machine learning is constantly being applied to new industries and new problems. Whether you're a marketer, video game designer, or programmer, this course is here to help you apply machine learning to your work. Welcome to the "Python Programming: Machine Learning, Deep Learning Python" course. In this course, we will learn what is Deep Learning and how does it work.


Python Programming: Machine Learning, Deep Learning

#artificialintelligence

Python instructors on Udemy specialize in everything from software development to data analysis, and are known for their effective, friendly instruction for students of all levels. Machine learning is constantly being applied to new industries and new problems. Whether you're a marketer, video game designer, or programmer, this course is here to help you apply machine learning to your work. Welcome to the "Python Programming: Machine Learning, Deep Learning Python" course. In this course, we will learn what is Deep Learning and how does it work.


Train a Pokemon Classifier Using an AWS Deep Learning AMI

#artificialintelligence

If you want to be the very best that no one ever was, you should read this tutorial on how to use an AWS Deep Learning AMI to train a Neural Network classifier in Python. The goal of this classifier is to give an image of a Gen 1 Pokemon, to identify it. That was a lot of acronyms and funny words, before we get started on the tutorial, let's cover some background information. AMI stands for Amazon Machine Image and is a template that is used to launch a virtual server (which in AWS is also known as an EC2 instance that you can read more about below). Since it is a template, you can use one AMI to launch multiple EC2 instances with the same configurations.


A Survey of Generalisation in Deep Reinforcement Learning

arXiv.org Artificial Intelligence

The study of generalisation in deep Reinforcement Learning (RL) aims to produce RL algorithms whose policies generalise well to novel unseen situations at deployment time, avoiding overfitting to their training environments. Tackling this is vital if we are to deploy reinforcement learning algorithms in real world scenarios, where the environment will be diverse, dynamic and unpredictable. This survey is an overview of this nascent field. We provide a unifying formalism and terminology for discussing different generalisation problems, building upon previous works. We go on to categorise existing benchmarks for generalisation, as well as current methods for tackling the generalisation problem. Finally, we provide a critical discussion of the current state of the field, including recommendations for future work. Among other conclusions, we argue that taking a purely procedural content generation approach to benchmark design is not conducive to progress in generalisation, we suggest fast online adaptation and tackling RL-specific problems as some areas for future work on methods for generalisation, and we recommend building benchmarks in underexplored problem settings such as offline RL generalisation and reward-function variation.


Challenges of Artificial Intelligence -- From Machine Learning and Computer Vision to Emotional Intelligence

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.


Deep Reinforcement Learning

arXiv.org Artificial Intelligence

Deep reinforcement learning has gathered much attention recently. Impressive results were achieved in activities as diverse as autonomous driving, game playing, molecular recombination, and robotics. In all these fields, computer programs have taught themselves to solve difficult problems. They have learned to fly model helicopters and perform aerobatic manoeuvers such as loops and rolls. In some applications they have even become better than the best humans, such as in Atari, Go, poker and StarCraft. The way in which deep reinforcement learning explores complex environments reminds us of how children learn, by playfully trying out things, getting feedback, and trying again. The computer seems to truly possess aspects of human learning; this goes to the heart of the dream of artificial intelligence. The successes in research have not gone unnoticed by educators, and universities have started to offer courses on the subject. The aim of this book is to provide a comprehensive overview of the field of deep reinforcement learning. The book is written for graduate students of artificial intelligence, and for researchers and practitioners who wish to better understand deep reinforcement learning methods and their challenges. We assume an undergraduate-level of understanding of computer science and artificial intelligence; the programming language of this book is Python. We describe the foundations, the algorithms and the applications of deep reinforcement learning. We cover the established model-free and model-based methods that form the basis of the field. Developments go quickly, and we also cover advanced topics: deep multi-agent reinforcement learning, deep hierarchical reinforcement learning, and deep meta learning.


Abstractions of General Reinforcement Learning

arXiv.org Artificial Intelligence

The field of artificial intelligence (AI) is devoted to the creation of artificial decision-makers that can perform (at least) on par with the human counterparts on a domain of interest. Unlike the agents in traditional AI, the agents in artificial general intelligence (AGI) are required to replicate human intelligence in almost every domain of interest. Moreover, an AGI agent should be able to achieve this without (virtually any) further changes, retraining, or fine-tuning of the parameters. The real world is non-stationary, non-ergodic, and non-Markovian: we, humans, can neither revisit our past nor are the most recent observations sufficient statistics. Yet, we excel at a variety of complex tasks. Many of these tasks require longterm planning. We can associate this success to our natural faculty to abstract away task-irrelevant information from our overwhelming sensory experience. We make task-specific mental models of the world without much effort. Due to this ability to abstract, we can plan on a significantly compact representation of a task without much loss of performance. Not only this, we also abstract our actions to produce high-level plans: the level of action-abstraction can be anywhere between small muscle movements to a mental notion of "doing an action". It is natural to assume that any AGI agent competing with humans (at every plausible domain) should also have these abilities to abstract its experiences and actions. This thesis is an inquiry into the existence of such abstractions which aid efficient planing for a wide range of domains, and most importantly, these abstractions come with some optimality guarantees.


Explainable AI for B5G/6G: Technical Aspects, Use Cases, and Research Challenges

arXiv.org Artificial Intelligence

When 5G began its commercialisation journey around 2020, the discussion on the vision of 6G also surfaced. Researchers expect 6G to have higher bandwidth, coverage, reliability, energy efficiency, lower latency, and, more importantly, an integrated "human-centric" network system powered by artificial intelligence (AI). Such a 6G network will lead to an excessive number of automated decisions made every second. These decisions can range widely, from network resource allocation to collision avoidance for self-driving cars. However, the risk of losing control over decision-making may increase due to high-speed data-intensive AI decision-making beyond designers and users' comprehension. The promising explainable AI (XAI) methods can mitigate such risks by enhancing the transparency of the black box AI decision-making process. This survey paper highlights the need for XAI towards the upcoming 6G age in every aspect, including 6G technologies (e.g., intelligent radio, zero-touch network management) and 6G use cases (e.g., industry 5.0). Moreover, we summarised the lessons learned from the recent attempts and outlined important research challenges in applying XAI for building 6G systems. This research aligns with goals 9, 11, 16, and 17 of the United Nations Sustainable Development Goals (UN-SDG), promoting innovation and building infrastructure, sustainable and inclusive human settlement, advancing justice and strong institutions, and fostering partnership at the global level.