Goto

Collaborating Authors

Results


La veille de la cybersécurité

#artificialintelligence

Most of us interact with artificial intelligence (AI) on a daily basis, whether we realize it or not. Every time you ask Alexa or Siri a question or turn to Google to settle a bar bet on who owns the National Football League's record for most career touchdowns (the answer, by the way, is Jerry Rice), you're using AI. In the business world, AI is ubiquitous. From AI bots that can identify, evaluate, and make recommendations for streamlining business processes to cybersecurity systems that continuously monitor data input patterns in order to thwart cyberattacks, AI repeatedly has demonstrated its capacity for processing and analyzing reams of data faster and more accurately than a human ever could.


Council Post: Your AI Doesn't Really Understand You

#artificialintelligence

Charles Simon, BSEE, MSCs, is the founder and CEO of FutureAI. Most of us interact with artificial intelligence (AI) on a daily basis, whether we realize it or not. Every time you ask Alexa or Siri a question or turn to Google to settle a bar bet on who owns the National Football League's record for most career touchdowns (the answer, by the way, is Jerry Rice), you're using AI. In the business world, AI is ubiquitous. From AI bots that can identify, evaluate, and make recommendations for streamlining business processes to cybersecurity systems that continuously monitor data input patterns in order to thwart cyberattacks, AI repeatedly has demonstrated its capacity for processing and analyzing reams of data faster and more accurately than a human ever could.


The New Intelligence Game

#artificialintelligence

The relevance of the video is that the browser identified the application being used by the IAI as Google Earth and, according to the OSC 2006 report, the Arabic-language caption reads Islamic Army in Iraq/The Military Engineering Unit – Preparations for Rocket Attack, the video was recorded in 5/1/2006, we provide, in Appendix A, a reproduction of the screenshot picture made available in the OSC report. Now, prior to the release of this video demonstration of the use of Google Earth to plan attacks, in accordance with the OSC 2006 report, in the OSC-monitored online forums, discussions took place on the use of Google Earth as a GEOINT tool for terrorist planning. On August 5, 2005 the user "Al-Illiktrony" posted a message to the Islamic Renewal Organization forum titled A Gift for the Mujahidin, a Program To Enable You to Watch Cities of the World Via Satellite, in this post the author dedicated Google Earth to the mujahidin brothers and to Shaykh Muhammad al-Mas'ari, the post was replied in the forum by "Al-Mushtaq al-Jannah" warning that Google programs retain complete information about their users. This is a relevant issue, however, there are two caveats, given the amount of Google Earth users, it may be difficult for Google to flag a jihadist using the functionality in time to prevent an attack plan, one possible solution would be for Google to flag computers based on searched websites and locations, for instance to flag computers that visit certain critical sites, but this is a problem when landmarks are used, furthermore, and this is the second caveat, one may not use one's own computer to produce the search or even mask the IP address. On October 3, 2005, as described in the OSC 2006 report, in a reply to a posting by Saddam Al-Arab on the Baghdad al-Rashid forum requesting the identification of a roughly sketched map, "Almuhannad" posted a link to a site that provided a free download of Google Earth, suggesting that the satellite imagery from Google's service could help identify the sketch.


State of AI Ethics Report (Volume 6, February 2022)

arXiv.org Artificial Intelligence

This report from the Montreal AI Ethics Institute (MAIEI) covers the most salient progress in research and reporting over the second half of 2021 in the field of AI ethics. Particular emphasis is placed on an "Analysis of the AI Ecosystem", "Privacy", "Bias", "Social Media and Problematic Information", "AI Design and Governance", "Laws and Regulations", "Trends", and other areas covered in the "Outside the Boxes" section. The two AI spotlights feature application pieces on "Constructing and Deconstructing Gender with AI-Generated Art" as well as "Will an Artificial Intellichef be Cooking Your Next Meal at a Michelin Star Restaurant?". Given MAIEI's mission to democratize AI, submissions from external collaborators have featured, such as pieces on the "Challenges of AI Development in Vietnam: Funding, Talent and Ethics" and using "Representation and Imagination for Preventing AI Harms". The report is a comprehensive overview of what the key issues in the field of AI ethics were in 2021, what trends are emergent, what gaps exist, and a peek into what to expect from the field of AI ethics in 2022. It is a resource for researchers and practitioners alike in the field to set their research and development agendas to make contributions to the field of AI ethics.


Technology Ethics in Action: Critical and Interdisciplinary Perspectives

arXiv.org Artificial Intelligence

This special issue interrogates the meaning and impacts of "tech ethics": the embedding of ethics into digital technology research, development, use, and governance. In response to concerns about the social harms associated with digital technologies, many individuals and institutions have articulated the need for a greater emphasis on ethics in digital technology. Yet as more groups embrace the concept of ethics, critical discourses have emerged questioning whose ethics are being centered, whether "ethics" is the appropriate frame for improving technology, and what it means to develop "ethical" technology in practice. This interdisciplinary issue takes up these questions, interrogating the relationships among ethics, technology, and society in action. This special issue engages with the normative and contested notions of ethics itself, how ethics has been integrated with technology across domains, and potential paths forward to support more just and egalitarian technology. Rather than starting from philosophical theories, the authors in this issue orient their articles around the real-world discourses and impacts of tech ethics--i.e., tech ethics in action.


Systems Challenges for Trustworthy Embodied Systems

arXiv.org Artificial Intelligence

A new generation of increasingly autonomous and self-learning systems, which we call embodied systems, is about to be developed. When deploying these systems into a real-life context we face various engineering challenges, as it is crucial to coordinate the behavior of embodied systems in a beneficial manner, ensure their compatibility with our human-centered social values, and design verifiably safe and reliable human-machine interaction. We are arguing that raditional systems engineering is coming to a climacteric from embedded to embodied systems, and with assuring the trustworthiness of dynamic federations of situationally aware, intent-driven, explorative, ever-evolving, largely non-predictable, and increasingly autonomous embodied systems in uncertain, complex, and unpredictable real-world contexts. We are also identifying a number of urgent systems challenges for trustworthy embodied systems, including robust and human-centric AI, cognitive architectures, uncertainty quantification, trustworthy self-integration, and continual analysis and assurance.


A Comprehensive Survey on Radio Frequency (RF) Fingerprinting: Traditional Approaches, Deep Learning, and Open Challenges

arXiv.org Artificial Intelligence

Fifth generation (5G) networks and beyond envisions massive Internet of Things (IoT) rollout to support disruptive applications such as extended reality (XR), augmented/virtual reality (AR/VR), industrial automation, autonomous driving, and smart everything which brings together massive and diverse IoT devices occupying the radio frequency (RF) spectrum. Along with spectrum crunch and throughput challenges, such a massive scale of wireless devices exposes unprecedented threat surfaces. RF fingerprinting is heralded as a candidate technology that can be combined with cryptographic and zero-trust security measures to ensure data privacy, confidentiality, and integrity in wireless networks. Motivated by the relevance of this subject in the future communication networks, in this work, we present a comprehensive survey of RF fingerprinting approaches ranging from a traditional view to the most recent deep learning (DL) based algorithms. Existing surveys have mostly focused on a constrained presentation of the wireless fingerprinting approaches, however, many aspects remain untold. In this work, however, we mitigate this by addressing every aspect - background on signal intelligence (SIGINT), applications, relevant DL algorithms, systematic literature review of RF fingerprinting techniques spanning the past two decades, discussion on datasets, and potential research avenues - necessary to elucidate this topic to the reader in an encyclopedic manner.


Artificial Intellgence -- Application in Life Sciences and Beyond. The Upper Rhine Artificial Intelligence Symposium UR-AI 2021

arXiv.org Artificial Intelligence

The TriRhenaTech alliance presents the accepted papers of the 'Upper-Rhine Artificial Intelligence Symposium' held on October 27th 2021 in Kaiserslautern, Germany. Topics of the conference are applications of Artificial Intellgence in life sciences, intelligent systems, industry 4.0, mobility and others. The TriRhenaTech alliance is a network of universities in the Upper-Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, Offenburg and Trier, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.


Explainable AI for B5G/6G: Technical Aspects, Use Cases, and Research Challenges

arXiv.org Artificial Intelligence

When 5G began its commercialisation journey around 2020, the discussion on the vision of 6G also surfaced. Researchers expect 6G to have higher bandwidth, coverage, reliability, energy efficiency, lower latency, and, more importantly, an integrated "human-centric" network system powered by artificial intelligence (AI). Such a 6G network will lead to an excessive number of automated decisions made every second. These decisions can range widely, from network resource allocation to collision avoidance for self-driving cars. However, the risk of losing control over decision-making may increase due to high-speed data-intensive AI decision-making beyond designers and users' comprehension. The promising explainable AI (XAI) methods can mitigate such risks by enhancing the transparency of the black box AI decision-making process. This survey paper highlights the need for XAI towards the upcoming 6G age in every aspect, including 6G technologies (e.g., intelligent radio, zero-touch network management) and 6G use cases (e.g., industry 5.0). Moreover, we summarised the lessons learned from the recent attempts and outlined important research challenges in applying XAI for building 6G systems. This research aligns with goals 9, 11, 16, and 17 of the United Nations Sustainable Development Goals (UN-SDG), promoting innovation and building infrastructure, sustainable and inclusive human settlement, advancing justice and strong institutions, and fostering partnership at the global level.


A Game-Theoretic Approach for AI-based Botnet Attack Defence

arXiv.org Artificial Intelligence

A strong cyber defense system should be able to detect, monitor, and promptly leverage defence mechanisms to the cyber threats including evolving and intelligent attacks Hou et al. [2020], Brundage et al. [2018], Jang-Jaccard and Nepal [2014], Camp et al. [2019]. However, traditional defensive techniques cannot avoid the novel and evolving attacks which can leverage AI technology to plan and launch various attacks. AI-powered attacks can be categorized based on AI-aided and AI-embedded attacks. AI-aided attacks are those that leverage AI to launch the attacks effectively. In this type, the intelligent attackers use AI techniques. However, in AI-embedded attacks, the threats are weaponized by AI themselves such as Deep locker Stoecklin [2018] while in the AI-aided attacks, the attackers could launch various AI-based techniques to detect and recognize the target network, vulnerabilities, and valuable targets Kaloudi and Li [2020]. In fact, they utilize various AI techniques as a tool for various purposes. In Kaloudi and Li [2020], the authors investigated the AI-powered cyber attacks and mapped them onto a proposed framework with new threats including the classification of several aspects of threats that use AI during the cyber-attack life cycle.