Goto

Collaborating Authors

Results


The "Hello World" of Tensorflow - KDnuggets

#artificialintelligence

Tensorflow is an open-source end-to-end machine learning framework that makes it easy to train and deploy the model. It consists of two words - tensor and flow. A tensor is a vector or a multidimensional array that is a standard way of representing the data in deep learning models. Flow implies how the data moves through a graph by undergoing the operations called nodes. It is used for numerical computation and large-scale machine learning by bundling various algorithms together.


State of AI Ethics Report (Volume 6, February 2022)

arXiv.org Artificial Intelligence

This report from the Montreal AI Ethics Institute (MAIEI) covers the most salient progress in research and reporting over the second half of 2021 in the field of AI ethics. Particular emphasis is placed on an "Analysis of the AI Ecosystem", "Privacy", "Bias", "Social Media and Problematic Information", "AI Design and Governance", "Laws and Regulations", "Trends", and other areas covered in the "Outside the Boxes" section. The two AI spotlights feature application pieces on "Constructing and Deconstructing Gender with AI-Generated Art" as well as "Will an Artificial Intellichef be Cooking Your Next Meal at a Michelin Star Restaurant?". Given MAIEI's mission to democratize AI, submissions from external collaborators have featured, such as pieces on the "Challenges of AI Development in Vietnam: Funding, Talent and Ethics" and using "Representation and Imagination for Preventing AI Harms". The report is a comprehensive overview of what the key issues in the field of AI ethics were in 2021, what trends are emergent, what gaps exist, and a peek into what to expect from the field of AI ethics in 2022. It is a resource for researchers and practitioners alike in the field to set their research and development agendas to make contributions to the field of AI ethics.


Pre-Trained Language Transformers are Universal Image Classifiers

arXiv.org Artificial Intelligence

Facial images disclose many hidden personal traits such as age, gender, race, health, emotion, and psychology. Understanding these traits will help to classify the people in different attributes. In this paper, we have presented a novel method for classifying images using a pretrained transformer model. We apply the pretrained transformer for the binary classification of facial images in criminal and non-criminal classes. The pretrained transformer of GPT-2 is trained to generate text and then fine-tuned to classify facial images. During the finetuning process with images, most of the layers of GT-2 are frozen during backpropagation and the model is frozen pretrained transformer (FPT). The FPT acts as a universal image classifier, and this paper shows the application of FPT on facial images. We also use our FPT on encrypted images for classification. Our FPT shows high accuracy on both raw facial images and encrypted images. We hypothesize the meta-learning capacity FPT gained because of its large size and trained on a large size with theory and experiments. The GPT-2 trained to generate a single word token at a time, through the autoregressive process, forced to heavy-tail distribution. Then the FPT uses the heavy-tail property as its meta-learning capacity for classifying images. Our work shows one way to avoid bias during the machine classification of images.The FPT encodes worldly knowledge because of the pretraining of one text, which it uses during the classification. The statistical error of classification is reduced because of the added context gained from the text.Our paper shows the ethical dimension of using encrypted data for classification.Criminal images are sensitive to share across the boundary but encrypted largely evades ethical concern.FPT showing good classification accuracy on encrypted images shows promise for further research on privacy-preserving machine learning.


Fighting Money Laundering with Statistics and Machine Learning: An Introduction and Review

arXiv.org Machine Learning

Money laundering is a profound, global problem. Nonetheless, there is little statistical and machine learning research on the topic. In this paper, we focus on anti-money laundering in banks. To help organize existing research in the field, we propose a unifying terminology and provide a review of the literature. This is structured around two central tasks: (i) client risk profiling and (ii) suspicious behavior flagging. We find that client risk profiling is characterized by diagnostics, i.e., efforts to find and explain risk factors. Suspicious behavior flagging, on the other hand, is characterized by non-disclosed features and hand-crafted risk indices. Finally, we discuss directions for future research. One major challenge is the lack of public data sets. This may, potentially, be addressed by synthetic data generation. Other possible research directions include semi-supervised and deep learning, interpretability and fairness of the results.


Forecasting: theory and practice

arXiv.org Machine Learning

Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.


Modeling Users' Behavior Sequences with Hierarchical Explainable Network for Cross-domain Fraud Detection

arXiv.org Artificial Intelligence

With the explosive growth of the e-commerce industry, detecting online transaction fraud in real-world applications has become increasingly important to the development of e-commerce platforms. The sequential behavior history of users provides useful information in differentiating fraudulent payments from regular ones. Recently, some approaches have been proposed to solve this sequence-based fraud detection problem. However, these methods usually suffer from two problems: the prediction results are difficult to explain and the exploitation of the internal information of behaviors is insufficient. To tackle the above two problems, we propose a Hierarchical Explainable Network (HEN) to model users' behavior sequences, which could not only improve the performance of fraud detection but also make the inference process interpretable. Meanwhile, as e-commerce business expands to new domains, e.g., new countries or new markets, one major problem for modeling user behavior in fraud detection systems is the limitation of data collection, e.g., very few data/labels available. Thus, in this paper, we further propose a transfer framework to tackle the cross-domain fraud detection problem, which aims to transfer knowledge from existing domains (source domains) with enough and mature data to improve the performance in the new domain (target domain). Our proposed method is a general transfer framework that could not only be applied upon HEN but also various existing models in the Embedding & MLP paradigm. Based on 90 transfer task experiments, we also demonstrate that our transfer framework could not only contribute to the cross-domain fraud detection task with HEN, but also be universal and expandable for various existing models.


Feature Selection-based Intrusion Detection System Using Genetic Whale Optimization Algorithm and Sample-based Classification

arXiv.org Artificial Intelligence

Preventing and detecting intrusions and attacks on wireless networks has become an important and serious challenge. On the other hand, due to the limited resources of wireless nodes, the use of monitoring nodes for permanent monitoring in wireless sensor networks in order to prevent and detect intrusion and attacks in this type of network is practically non-existent. Therefore, the solution to overcome this problem today is the discussion of remote-control systems and has become one of the topics of interest in various fields. Remote monitoring of node performance and behavior in wireless sensor networks, in addition to detecting malicious nodes within the network, can also predict malicious node behavior in future. In present research, a network intrusion detection system using feature selection based on a combination of Whale optimization algorithm (WOA) and genetic algorithm (GA) and sample-based classification is proposed. In this research, the standard data set KDDCUP1999 has been used in which the characteristics related to healthy nodes and types of malicious nodes are stored based on the type of attacks in the network. The proposed method is based on the combination of feature selection based on Whale optimization algorithm and genetic algorithm with KNN classification in terms of accuracy criteria, has better results than other previous methods. Based on this, it can be said that the Whale optimization algorithm and the genetic algorithm have extracted the features related to the class label well, and the KNN method has been able to well detect the misconduct nodes in the intrusion detection data set in wireless networks.


Do You See What I See? Capabilities and Limits of Automated Multimedia Content Analysis

arXiv.org Artificial Intelligence

The ever-increasing amount of user-generated content online has led, in recent years, to an expansion in research and investment in automated content analysis tools. Scrutiny of automated content analysis has accelerated during the COVID-19 pandemic, as social networking services have placed a greater reliance on these tools due to concerns about health risks to their moderation staff from in-person work. At the same time, there are important policy debates around the world about how to improve content moderation while protecting free expression and privacy. In order to advance these debates, we need to understand the potential role of automated content analysis tools. This paper explains the capabilities and limitations of tools for analyzing online multimedia content and highlights the potential risks of using these tools at scale without accounting for their limitations. It focuses on two main categories of tools: matching models and computer prediction models. Matching models include cryptographic and perceptual hashing, which compare user-generated content with existing and known content. Predictive models (including computer vision and computer audition) are machine learning techniques that aim to identify characteristics of new or previously unknown content.


Artificial Intelligence Ethics and Safety: practical tools for creating "good" models

arXiv.org Artificial Intelligence

The AI Robotics Ethics Society (AIRES) is a non-profit organization founded in 2018 by Aaron Hui to promote awareness and the importance of ethical implementation and regulation of AI. AIRES is now an organization with chapters at universities such as UCLA (Los Angeles), USC (University of Southern California), Caltech (California Institute of Technology), Stanford University, Cornell University, Brown University, and the Pontifical Catholic University of Rio Grande do Sul (Brazil). AIRES at PUCRS is the first international chapter of AIRES, and as such, we are committed to promoting and enhancing the AIRES Mission. Our mission is to focus on educating the AI leaders of tomorrow in ethical principles to ensure that AI is created ethically and responsibly. As there are still few proposals for how we should implement ethical principles and normative guidelines in the practice of AI system development, the goal of this work is to try to bridge this gap between discourse and praxis. Between abstract principles and technical implementation. In this work, we seek to introduce the reader to the topic of AI Ethics and Safety. At the same time, we present several tools to help developers of intelligent systems develop "good" models. This work is a developing guide published in English and Portuguese. Contributions and suggestions are welcome.


Artificial Intellgence -- Application in Life Sciences and Beyond. The Upper Rhine Artificial Intelligence Symposium UR-AI 2021

arXiv.org Artificial Intelligence

The TriRhenaTech alliance presents the accepted papers of the 'Upper-Rhine Artificial Intelligence Symposium' held on October 27th 2021 in Kaiserslautern, Germany. Topics of the conference are applications of Artificial Intellgence in life sciences, intelligent systems, industry 4.0, mobility and others. The TriRhenaTech alliance is a network of universities in the Upper-Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, Offenburg and Trier, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.